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Abstract
Generative deep learning architectures can produce realistic, high-resolution fake imagery – with potentially drastic societal
implications. Assessing the risks of this technology for the general public requires better understanding of the conditions
under which novel generative methods can generate realistic data. A key question in this context is: How easy is it to
generate realistic imagery, in particular for niche domains. The iterative process required to achieve specific image content is
difficult to automate and control. Especially for rare classes, it remains difficult to assess fidelity, meaning whether generative
approaches produce realistic imagery and alignment, meaning how (well) the generation can be guided by human input. In
this work, we present a large-scale empirical evaluation of generative architectures which we fine-tuned to generate synthetic
satellite imagery. We focus on nuclear power plants as an example of a rare object category - as there are only around 400
facilities worldwide, this restriction is exemplary for many other scenarios in which training and test data is limited by the
restricted number of occurrences of real-world examples. We generate synthetic imagery by conditioning on two kinds of
modalities, textual input and image input obtained from a game engine that allows for detailed specification of the building
layout. The generated images are assessed by commonly used metrics for automatic evaluation and then compared with
human judgement from our conducted user studies to assess their trustworthiness. Our results demonstrate that even for rare
objects, generation of authentic synthetic satellite imagery with textual or detailed building layouts is feasible. However, in
line with previous work, we find that automated metrics are often not aligned with human perception – in fact, we find strong
negative correlations between commonly used image quality metrics and human ratings. We believe that our findings enable
researchers to better assess the strengths and weaknesses of different generative methods, especially for niche domains and
rare object classes, and can help guide future improvements of generative methods.
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1. Introduction
With the advent of novel generative methods for tabular
data [1, 2], text [3] and images [4], synthetic data has
entered the main stage of machine learning (ML) research.
The applications are manifold, ranging from arts over
software development to improving ML itself.

For generative Artificial Intelligence (genAI), meth-
ods designed for text data, the risks and societal impact
have been studied, for instance, in the context of large
election campaigns [5]. For the image domain however,
research on the technical underpinnings of the risks for
the general public inherent to genAI technology have
been underrepresented in the literature.

Within the ML community, the primary use case for
synthetic data is arguably the generation of new training
data for the development of larger and more powerful
generative ML models. This application scenario has
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Figure 1: Samples of synthetic satellite imagery of facilities.
Generated using fine-tuned generative models with only text
input (top row) and the same fine-tuned models with addi-
tional image input (bottom row).

attracted attention, especially in the context of tech com-
panies’ demand for more data. These companies could
soon run out of data for training language models [6].
Synthetic data appears to be the solution to these prob-
lems of data-hungry large ML models, not only for these
applications. Moreover, in other application domains,
such as health care, synthetic data has attracted atten-
tion for different reasons: patient records are sensitive
data which must not be shared publicly, hence synthetic
patient record data could solve the problems around train-
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ing ML models for healthcare without risking patients’
privacy [7].

While the opportunities synthetic data offers are cer-
tainly convincing, there are two key challenges: For one,
it remains difficult to control the output of these methods,
second, it remains difficult to automatically assess the
quality of generated data. In user-facing products, these
two challenges are usually met with extensive human
work – there are highly-paid prompt engineering posi-
tions and crowd working platforms for evaluating the
quality of generated data. These measures jeopardize the
very idea of generative methods, automated data genera-
tion, and highlight the need for a better understanding
of control and evaluation of generative methods.

In this work, we investigate two main questions
around state-of-the-art image generation methods: 1)
How easily can they be controlled? and 2) How trustwor-
thy are established automatic evaluation metrics? Our
main contribution is a large-scale empirical evaluation
with more than 30,000 human ratings of generated im-
ages. In contrast to previous work, we take the evaluated
methods outside of their comfort zone: First we consider
a niche domain, satellite imagery and second, we focus
on a specific class of objects for which only a few hundred
real-world instances exist, nuclear plants.

Objective We aim to leverage and investigate ML tech-
niques in combination with a pre-trained text-to-image
model to generate synthetic satellite images for remote
sensing purposes that could combat the issue of insuffi-
cient labeled imagery. With our approach, appropriate
data could be easily generated in a controllable setting
while maintaining low costs. To examine the generalizing
capabilities of the pre-trained model and training on lim-
ited data, we generate imagery of a unique and rare class.
Given the context, we opt for nuclear power plants as our
target object and show how synthetic satellite imagery of
a specific class can be created under set conditions. We
use text prompts and additional image input as guidance
for the generation process, and combine this workflow
with fine-tuned models.

Moreover, we conduct an empirical study regarding the
comparison of different approaches for conditional image
synthesis, as well as the automated evaluation metrics
used to assess the generated data. Current established
evaluation metrics for the assessment of perceptual image
quality are known to not necessarily align with human
perception and are, thus, not always a reliable measure of
image quality [8]. In this work, we acquire quantitative
evaluation results through larger-scale human-in-the-
loop experiments, which we then compare to established
metrics in the field. To the best of our knowledge, such an
in-depth empirical comparison between models, metrics
and human ratings has not been done for rare object
classes, such as nuclear facilities, in this manner before.

2. Related Work
In the following section we provide an overview of the
current state of research in the relevant fields: Genera-
tive modeling, particularly text-to-image synthesis, deep
learning (DL) applications in remote sensing, and evalu-
ation methods in the context of genAI.

2.1. Deep Generative Models for Image
Synthesis

With advances in ML and DL, the process of image gen-
eration can be automated and provides a way to generate
data at relatively low cost. There are several popular
model architectures that aim to generate data and for a
long time, the state of the art in generative modeling have
been Generative Adversarial Networks (GAN) [9], which
have been explored thoroughly and applied in various
domains and used as default for text-to-image translation
over the years [10]. More recently, novel approaches to
image generation based on Diffusion Models (DM) [11]
overcame some of the challenges associated with GAN
training, with e.g. Dhariwal and Nichol [12] showing that
DMs could outperform GANs in image synthesis. Cur-
rently, many generative model architectures, especially
text-to-image ones, are based on DMs.

Text-to-image generation is a specific type of genera-
tive modeling which combines technologies of two dif-
ferent fields: Computer Vision and Natural Language
Processing. Image generation conditioned on text has
the advantage that it is very intuitive and easily compre-
hensible. There exist a variety of such recently devel-
oped vision-language models [13, 14, 15, 4, 16], that have
already shown how powerful such large text-to-image
architectures can be. Especially their zero-shot ability -
synthesizing images of concepts not seen during training
- makes these models very compelling.

Furthermore, there are attempts to directly manipulate
features in the latent space to create desired images. For
example, by modelling the independent latent character-
istics of an object through disentangled representations
so that these features can be edited, e.g. changing pose
and appearance respectively [17]. Or by identifying la-
tent directions through PCA, which enables to control
GAN model-based image features like viewpoint, aging,
lighting, and time of day [18]. Park et al. identify a lo-
cal latent subspace within the latent space of a diffusion
model, which enables image editing capabilities through
movement along the basis vector at specific timesteps
[19].

2.2. Deep Learning in Remote Sensing
There are a variety of use cases for the utilization of DL
approaches in the context of satellite imagery and remote



sensing, which, since 2014, several works have already
dedicated themselves to [20]. Popular use-cases are scene
classification, object detection and segmentation [20].
With the emerging of generative models, GANs have
found their way into the domain as well, mostly dealing
with image-to-image translation tasks, e.g. translating
city styles or creating cartographic representations from
satellite images [21, 3]. Tasks such as cloud removal and
super-resolution are frequent use-cases as well.

However, there have been few works addressing the
synthesis of novel imagery: [22] have implemented and
evaluated GANs for the synthesis of aerial imagery, but
in an unconditional manner. Others have used special
software tools instead of GANs with focus on certain
objects and tasks like airplanes [23] and synthetic over-
head imagery suitable for building segmentation [24].
While most research aims to generate natural images,
some works have already brought the text-to-image ap-
proach into the remote sensing domain, enabling the
generation of different remote sensing images based on
text descriptions [25, 26, 27, 28]. However, these were
somewhat restricted by the limited amount of suitable
image-text datasets and produced results leaving room
for improvement. This work aims to further investigate
the conditional generation of satellite imagery of a spe-
cific and rare class based on text descriptions by using
a pre-trained text-to-image model and limited training
data for remote sensing, which, to the best of our knowl-
edge, has only been done in [29] so far. Moreover, the
additional use of image input next to text prompts for
further conditioning during the image synthesis process
for satellite imagery, as done in [30], is underrepresented
as well.

2.3. Evaluation of Generative AI
For genAI, there are several ways to evaluate models
and their outputs [31]. The most common methods are
described in the following:

Automatic metrics. The qualitative evaluation of gen-
erative models can be very subjective, and requires ad-
equate quantitative metrics for the systematic assess-
ment of generative models and their synthesized data.
However, the evaluation of generative models, or their
synthetic data, remains a challenging task: There are
no standardized benchmarks or protocols set in place
[32, 33], and especially in the domain of satellite imagery,
finding suitable datasets for training as well as evaluation
is rather difficult, particularly for the specific use case at
hand. A lot of evaluation metrics, such as the commonly
used Fréchet Inception Distance (FID) [34], require suf-
ficient real data for comparative analysis, which - like
in our case - can be difficult to acquire, due to the fact
alone that there are only a few hundred existing nuclear

facilities in the world. The Inception Score (IS) [35] only
assesses the synthetic images, which, albeit lacking a
comparison to real data, is more practicable in our case.
Since most metrics rely on the feature space of a pre-
trained classification model, this limits the metrics to
what the model knows, and renders them biased towards
the used Inception model and, thus, the ImageNet dataset
which the model was trained on [36]. Another draw-
back is the need for a large sample size (typically around
50k) to make the metrics robust and reliable, which is
not always feasible. Furthermore, the FID is known to
not necessarily align with human visual perception [8],
especially in the remote sensing and earth observation
domain [22]. The automatic, reliable evaluation of gener-
ative models and its outputs remains an ongoing research
field [31].

Downstream tasks. Another way of evaluating syn-
thetic data is its use in a downstream application task:
The generated images can be used in e.g. a classifica-
tion task to observe how well they are classified by a
pre-trained classifier [37]. A second method is to train
a classification model on the synthetic data, or parts of
it, and then apply the trained model on real unseen data
and evaluate based on the predictive performance [31].
However, for this method there has to be suitable real
data to test with, which, like in our case, is not necessarily
given.

Human evaluation. Another method to assess genAI
is human evaluation, with many works resorting to user
studies to judge their synthetic data [38, 16, 13, 14, 35].
So-called human-in-the-loop experiments can be a valu-
able alternative when the aforementioned methods are
not applicable or unreliable, and their results are easily
comprehensible. Human ratings can give a more accurate
assessment for specific tasks when automated metrics
fail to reliably capture the image quality. Although there
have been works proposing more standardized guidelines
for evaluation [8, 33, 39], there are no established proto-
cols set in place for human experiments in genAI, which
makes a comparison between published works quite diffi-
cult. Moreover, conducting human experiments requires
additional work and resources, which are not always at
disposal. We aim to conduct human evaluation for a use
case, where offline metrics are likely unfitting, and follow
recommendations regarding user study settings, to make
our findings transparent.

3. Method
By utilizing a pre-trained text-to-image model such as
Stable Diffusion and fine-tuning techniques, we are able
to leverage its prior knowledge while simultaneously



adapting the model to our domain. We have fine-tuned
this model on imagery of our target object, nuclear facili-
ties, using DreamBooth [40] and Textual Inversion [41]
as fine-tuning methods. For more details, we refer to the
respective sources. To test the generalizability and the
model’s zero-shot capabilities, we use the unmodified
pre-trained model as a baseline to examine how well the
prior knowledge can be leveraged to generate satellite im-
agery of our target object. We then apply the mentioned
fine-tuning approaches to further train the model on the
datasets described below. For further control during the
generation process, we use additional conditioning input
with the T2I-Adapter model [42, 30]. Moreover, we com-
bine the two approaches: Instead of using the original
Stable Diffusion model as base for the T2I-Adapter, we
exchange it with our fine-tuned versions (see Figure 2).
The intuition is to leverage the newly learned concepts
and use them in synergy with the additional image input.
The model might then be more familiar with the given
layout and able to generate data that better represents
our desired image content.

We have three approaches that rely only on text
prompts as input and then all three methods used in
combination with the T2I-Adapter, leaving us, in total,
with six models to evaluate:

(1) the original unmodified Stable Diffusion
model, SDiff T2I,
(2) the DreamBooth fine-tuned model, DB T2I,
(3) the fine-tuned one using Textual Inversion, TI
T2I,
(4) the base model (1) with the T2I-Adapter, SDiff
T2I+Adapter,
(5) the model from (2) with the T2I-Adapter, DB
T2I+Adapter,
(6) the model from (3) with the T2I-Adapter, TI
T2I+Adapter.

The implementation in this work relies heavily on Hug-
ging Face’s Diffusers Library [43]. For all approaches, we
use the publicly available Stable Diffusion v1.5 as base, a
pre-trained vision-language model build on Latent Dif-
fusion Models [4]. This version is compatible with the
pre-trained T2I-Adapter components and lays a consis-
tent foundation across methods for later comparison.

3.1. Data
To acquire data to train with, Google Earth Engine and
web scraping tools are applied to obtain satellite and
aerial imagery of nuclear facilities. After removing im-
ages where sites were blurred or of low quality, the result-
ing dataset contains 202 satellite images of 185 unique
nuclear power plants around the world. To exploit the
model’s prior, we apply conditionings - which are not

Figure 2: Workflow of our image generation process. We
use the renders from the game engine and process them into
the respective input modalities (depth/sketch/canny). If used,
they’re put into the T2I-Adapter and used as structural guid-
ance in the denoising component, together with the text em-
beddings obtained from the CLIP text encoder. A text prompt
could be "an aerial view of a [*] nuclear power plant". All com-
ponents are pre-trained, in case of fine-tuning, the U-Net
(with DreamBooth) or text encoder (with Textual Inversion)
are modified.

present in the mentioned training data - to those newly
learned concepts by adding keywords to the text prompts
for variations regarding the location, seasonality and the
time of day, for example, generating images of a nuclear
facility in the desert or in the winter. Using different set-
tings, synthetic images are generated for each approach.
For the additional image input, we use the T2I-Adapter
[42] as described in [30]. We generate three different
layouts of fictional power plants using the game engine
Unity, varying the angle and rotation from which the site
is looked at. This creates different viewpoints from the
same facility. The renders are then turned into canny
edge, depth maps and sketches for further structural guid-
ance during the generation process (see Figure 2). Images
are then generated using layout conditioning in addition
to the text prompts.

We generate a pool of images for each model, using
different variations in the given text prompts. For the
additional usage of the T2I-Adapter, we use different in-
put modalities (canny, depth map, sketch) and vary the
viewpoints for each of the three layouts. This way, we
generate a variety of synthetic imagery, but based on the
same three layouts originally rendered from the game
engine. For the human experiments, we randomly select
500 images for each approach. Figure 1 shows samples
of synthetic satellite imagery of nuclear facilities which
have been generated using the methods mentioned pre-
viously in this section. For these, either a single text
prompt (e.g. “an aerial view of a [*] nuclear power plant,
forest, green” ) or a text prompt with an additional im-
age have been used as input. For comparison, we also
include the 202 real images in our human evaluation ex-
periments. All images have been scaled to the same pixel
size (512x512).



(a) Image fidelity. (b) Text alignment.

(c) Layout alignment.

Figure 3: User interfaces of the conducted user studies.
Shown are the study designs of the (a) image fidelity, (b) text
alignment and (c) layout alignment assessments.

3.2. Experiments
To evaluate our generated data, we conduct a user study
where we assess based on three aspects: (a) Fidelity (im-
age quality), how authentic does an image look, (b) text
alignment (semantic control), how well does an image
match the given text prompt and (c) layout alignment
(structural control), how well can the structure of the
same subject be retained within several images. For
human experiments in genAI, some works opt for a 2-
alternative forced choice setup [15, 16, 22]: Two images
of two models are put next to each other and the user
is tasked with selecting the superior one. However, this
user interface design limits the comparison to only two
options at a time. Similar to other work [33, 44], we ap-
ply a Likert scale where users are tasked to rate a given
image or group of images from 1-5, depending on what
aspect is being evaluated. This way, images and methods
can be rated independently of one another and then later
evaluated and ranked.

User study. We use the crowdsourcing platform
Toloka [45] and considered two main principles in the

experimental design: The task should be simple and the
results interpretable [33]. The implemented user inter-
face design for each study is shown in Figure 3: For the
(a) image fidelity analysis (see Figure 3a), users are in-
structed to rate a given image from 1 (unrealistic) to
5 (realistic) based on how authentic it looks to them.
The interface for the (b) text alignment studies (see Fig-
ure 3b) looks almost the same, with the exception that the
text prompt that was used as conditioning input, is also
shown. Participants have to rate from 1 (does not match
at all) to 5 (matches exactly) how well the shown image
matches the text. The third user study examines the (c)
layout alignment. As depicted in Figure 3c, the user is
shown four images that were generated from the same
model, and asked to rate from 1 (completely different
facility in each image) to 5 (identical facility) whether
the shown images depict the same facility. Participants
were selected to be fluent in English and instructed about
the motivation of the study; all participants confirmed
acceptance of the data usage. We excluded responses
from participants that submitted incomplete tasks, tasks
in which users pressed only one key repeatedly and tasks
in which control tasks (for which ground truth data was
available) were answered incorrectly. For tasks (a) and
(b) every participant rated 30 images in total. In task (c)
each user rated 40 images. Compensation was according
to the minimum wage in the most frequent countries of
origin on the platform.

Evaluation setup. Since we lack sufficient real data
of our target object, as it is a rare object class, we only
consider metrics which do not rely on the feature space
of real data. Calculating scores like the FID [34] with
the 202 images (see Section 3.1) might deliver unreliable
results due to the low sample size and possibly contain
bias, as these were already used for fine-tuning. There-
fore, we only use the IS [35] as automatic metric in our
evaluation, although it also is a flawed metric [46]. For
implementation, we use torch-fidelity [47] to calculate
the score. The IS is calculated as follows:

IS = exp( E𝑥∼𝑝𝜃 [ 𝐷𝐾𝐿(𝑝(𝑦|𝑥)‖𝑝(𝑦))] ). (1)

𝑥 is sampled from 𝑝𝜃 , the encoded distribution of our
synthetic images. The metric makes use of the KL diver-
gence, calculated between the conditional label distribu-
tion 𝑝(𝑦|𝑥) (favoring low entropy) and the marginal dis-
tribution 𝑝(𝑦) from all samples (favoring high entropy).
For more details see [35]. To gain a score that might pos-
sibly be more accustomed to the remote sensing domain,
we further apply an adapted version of the IS, as done
in [29]: We exchange the pre-trained Inception model
with a classifier fine-tuned on a land-use classification
dataset [48], aerial-view imagery to give information on
land cover. The modified IS is denoted as ISadapt..



(a) Image fidelity user study results. (b) Text alignment user study results. (c) Layout alignment user study results.

Figure 4: All ratings have been normalized for every user and then scaled back to range 1-5. Human ratings of images
generated with different models show robust rankings for (a) image fidelity and (b) text alignment. Results for (c) layout
alignment seem less expressive, although slight differences are still visible. Humans rate real images consistently as most
realistic, but there are substantial differences between models w.r.t. fidelity and alignment scores.

(a) Image fidelity all results. (b) Text alignment all results. (c) Layout alignment all results.

Figure 5: The plots show the quality assessment of images generated with different models. Results are depicted by metric for
each model for experiments based on (a) image fidelity, (b) text alignment and (c) layout alignment. A comparison of human
ratings and offline metrics demonstrates that there’s a disparity between the two: Image quality of different models is judged
differently, images getting a high rating from humans can get a low score from offline metrics.

In regard to the compatibility of image-text pairs, a
common metric is the CLIPScore [49], which relies on the
CLIP [50] model: It measures the image-text similarity,
thus the higher the score, the better. The CLIPScore
is defined by the cosine similarity between the image
CLIP embeddings 𝑐 and text CLIP embeddings 𝑣 (see
Equation 2). The score is bound between 0 and 100.

CLIPScore(𝑐,𝑣) = max(100 * cos (𝑐,𝑣), 0) (2)

For our experiments, CLIPScore is calculated using an
open-source package [51], the default CLIP model is ViT-
B/32.

For correlation analysis, we investigate the relation-
ship between the automated metrics and the respective
human ratings. For this, we calculate the standard Pear-
son and Kendall Tau correlation coefficients, and the
Spearman rank correlation.

Regarding the obtained human ratings, we have to
consider that users rate differently than others and might
in general be more generous or pessimistic with their
judgements. Therefore, we normalize the scores to reduce
the individual user bias and spread: From each available
rating 𝑥 of a user 𝑗, we subtract the mean of the ratings
of that user, 𝑥̄𝑗 , to obtain the normalized value 𝑥̃𝑖,𝑗 =

𝑥𝑖,𝑗 − 𝑥̄𝑗 . We then scale all ratings back to the original
scale of 1-5. For each image, we then calculate the mean
rating and aggregate these for each model to obtain an
average score for each approach.

4. Results
In the following, we analyze the results of the user study
and compare the human ratings with established metrics.
The size of our sample after applying the quality control
on the collected study results, as described in Section 3,
is listed in Table 1. For the (c) layout alignment study,
one group of images had to be removed for each model
due to technical error, leaving us with a sample size of
496 images for each approach.

Table 1
Number of ratings, images and participants in user study.
(*From 744 image groups of four.)

# ratings # images # participants
(a) fidelity 16125 3202 447
(b) text alignment 14625 3000 451
(c) layout alignment 3412 2976* 290



Image fidelity. Regarding (a), scores are shown in Ta-
ble 2. Despite the smaller sample size, we can infer that
the real images achieve the best results during the human
experiments, followed by the text-only approaches and
then the methods combined with the additional image in-
put. A visual depiction is shown in Figure 4a. Excluding
the real imagery, for the synthetic data the fine-tuned
methods yield mostly better results than the correspond-
ing original Stable Diffusion approaches, apart from the
(2) DB T2I method.

Table 2
Image fidelity results. The real images achieve the best results
in human evaluation but receive only average scores with the
automated metrics. (*Note the lower sample size compared
to the other approaches.)

Model/Data Sample Size IS ↑ ISadapt. ↑ Human Perception ↑
not normalized normalized

Real images 202* 3.09±0.31 3.74±0.42 3.75±0.57 3.39±0.29
(1) SDiff T2I 500 2.76±0.19 3.10±0.29 3.45±0.69 3.23±0.37
(2) DB T2I 500 3.48±0.29 2.49±0.24 3.21±0.61 3.09±0.30
(3) TI T2I 500 3.04±0.20 2.85±0.28 3.50±0.65 3.26±0.30
(4) SDiff T2I+Adapter 500 5.05±0.40 5.51±0.48 2.29±0.69 2.58±0.38
(5) DB T2I+Adapter 500 3.98±0.28 4.72±0.30 3.02±0.70 2.98±0.34
(6) TI T2I+Adapter 500 3.91±0.24 5.03±0.55 2.29±0.75 2.76±0.39

Using additional input with the T2I-Adapter compo-
nent gives us more control over the image composition
during the generation process, however, the generated
images seem to lack image quality: They achieve poorer
results than the pure text-based approaches (see Fig-
ure 4a). But the fine-tuned approaches (5, 6) yield better
results in combination with the layout control in com-
parison to the original (4) base model. With the text-only
approaches, the unmodified model (1) achieves results
comparable to the fine-tuned models, but these images
often don’t show the desired satellite perspective: This
aspect is not considered with the Likert scale and was
not an influencing factor for the users regarding image fi-
delity, however this is a limiting factor for the generation
of satellite imagery. There was a significant difference
between the ratings depending on what was used as in-
put modality (e.g. canny input seems to produce lower
human ratings than sketch or depth maps), however this
was not further investigated in the scope of this work.

In contrast to the human ratings, automated metrics
consistently rank Adapter-approaches higher than gen-
erative models based solely on text input (see Figure 5a).
Furthermore, the real images achieve a relatively average
IS and ISadapt. in comparison to the other models.

Text alignment. Evaluation results for (b) text align-
ment are shown in Table 3. Here, the original model
(1) achieves the best image-text alignment scores from
human perspective as well as the CLIPScore. Following,
the DreamBooth fine-tuned approaches (2, 5) yield the
second-best results. Apart from this, the text alignment
seems to result in mostly poorer results with the addi-
tion of image input, according to our human evaluation,

Table 3
For the text alignment results, CLIPScore seems to align with
human judgement. (1) achieves the best results in this study.

Model Sample Size CLIPScore ↑ Human Perception ↑
not normalized normalized

(1) SDiff T2I 500 32.74 3.62±0.69 3.40±0.38
(2) DB T2I 500 31.24 3.28±0.76 3.17±0.39
(3) TI T2I 500 26.64 3.00±0.83 3.03±0.43
(4) SDiff T2I+Adapter 500 30.74 2.59±0.81 2.79±0.43
(5) DB T2I+Adapter 500 31.87 3.05±0.75 3.05±0.38
(6) TI T2I+Adapter 500 26.19 2.57±0.81 2.79±0.41

as shown in Figure 4b. However, this ranking does not
exactly align with the CLIPScore results. Here, both Tex-
tual Inversion fine-tuned approaches (3, 6) significantly
perform the poorest (see Figure 5b).

Layout alignment. Since there are no suitable quan-
titative metrics to evaluate the layout alignment across
several images, at least when the viewpoint and condi-
tions are different in each, we only look at the human
judgement results for the (c) layout alignment experi-
ments. The results are shown in Table 4: Contrary to
expectations, the DreamBooth fine-tuned approach (2)
without additional image input achieves the best results
in our human evaluation, as also visible in Figure 5c and
Figure 4c. However, only by a small margin. One possi-
ble reason could be, that the raters might still have been
influenced by the image quality or other distortions and
details, instead of solely focusing on the layout aspect.
In general, the additional conditioning input through the
adapter does lead to a better structural alignment accord-
ing to the scores. Except for (2), all Adapter-approaches
(4, 5, 6) outperform the ones that are solely based on text
input, (1, 3). For the Adapter-approaches, fine-tuning
seems to help the retaining of the given layout structure
during the generation process, as these (5, 6) achieve
noticeable better scores than (4).

Table 4
For layout alignment, only human evaluation is available. (2)
performs the best, but apart from this, theAdapter-approaches
are mostly better at structural control.

Model Sample Size Human Perception ↑
not normalized normalized

(1) SDiff T2I 496 2.656±0.75 2.848±0.36
(2) DB T2I 496 2.914±0.67 3.029±0.30
(3) TI T2I 496 2.416±0.65 2.780±0.29
(4) SDiff T2I+Adapter 496 2.688±0.77 2.909±0.37
(5) DB T2I+Adapter 496 2.858±0.61 3.023±0.29
(6) TI T2I+Adapter 496 2.843±0.62 3.022±0.31

Correlation. A correlation analysis has been per-
formed between the quantitative metrics and the respec-
tive user study results, the scores are shown in Table 5.
For each model, the scores are visually depicted in Fig-
ure 6.



For (a) image fidelity, we see that current evaluation
metrics, such as the IS and also its adapted version, don’t
align with human visual perception. They even correlate
negatively, albeit a little less for ISadapt. compared to the
original IS, when looking at the correlation coefficients
in Table 5. The negative correlation is also visible in
Figure 6a. For (b) text alignment, CLIPScore seems to
correlate mostly well with the human ratings, as evident
by the positive scores in Table 5 and visually in Figure 6b.
However, for some models the ranking does not match
that of the user studies (see Figure 5b). Furthermore,
the (4) SDiff+Adapter model achieves a relatively high
score as well, although scoring second lowest according
to human judgement.

Table 5
Correlation between human judgement and automated met-
rics. For (a) fidelity, the metrics correlate negatively with the
collected ratings. Regarding (b) text alignment, CLIPScore
seems to approximate human judgement well.

Correlation Pearson Spearman Kendall
(a) Human Rating vs IS -0.91 -0.82 -0.62

Human Rating vs ISadapt. -0.79 -0.68 -0.52
(b) Human Rating vs CLIPScore 0.61 0.89 0.73

(a) Image fidelity. (b) Text alignment.

Figure 6: Visual comparison between the automatic met-
rics and the human ratings (normalized and scaled) from the
user studies. Comparison between (a) IS scores and human
judgement regarding image fidelity and (b) CLIPScore and
human judgement regarding image-text alignment. There is a
negative correlation visible between the IS/ISadapt. and human
ratings (a). The CLIPScores and human ratings regarding text
alignment correlate positively (b).

5. Discussion
In this work we investigated to what extent modern gen-
erative DL methods can be used to generate imagery of
rare objects in niche domains. A special focus in this work
was on a comparison of control mechanisms for genera-
tive methods. In order to compare different approaches,
we leveraged automated quantitative metrics and com-
pared them with human ratings. In extensive empirical

evaluations, we demonstrate that novel image generation
methods can be used to generate imagery from niche do-
mains and rare objects. Importantly, we find that textual
control works well in many cases. But also controlling
the image generation with building layouts is feasible,
which allows for more fine-grained control.

Inception Score is not aligned with Human Ratings.
A key finding of our empirical results, which is in line
with previous studies [52], is that the automated metrics
that are used to optimize and evaluate image generation
for rare object classes, do not capture image quality as
rated by humans. Our results show that exchanging the
off-the-shelf classifier models pretrained on ImageNet,
which are used as feature extraction backbone in current
metrics like the IS, might provide a slightly better met-
ric. However, our results also demonstrate that despite
these adaptations to the domain of interest, the IS is not
aligned with human visual perception. According to [36],
established metrics as used with the default Inception
model as backbone might even behave unfair towards
diffusion models. Thus, current metrics, as is, are not a
reliable measure of performance and image quality when
the benchmark is human perception and the goal of these
metrics is to actually approximate human judgement. Es-
pecially for rare classes and niche domains, as in our
case, established metrics are not a trustworthy method of
evaluation. Since in such cases, there is not enough real
data to calculate additional comparative metrics (such as
the FID, KID, Precision and Recall) to get a more robust
and broader spectrum of evaluation, the main current
established metric for fidelity is the IS, which, as seen
in our experiments, is not reliable. Surprisingly, the IS
even correlates negatively with human judgement. This
appears to suggest a meaningful relationship between
these two aspects – but in the opposite direction from
what the IS score is intended to measure.

CLIPScore and Human Ratings. As seen in our (b)
text alignment results, CLIPScore seems to correlate
mostly well with human judgement, there might only
be a slight bias towards the (1) original base model, e.g.
(4) SDiff+Adapter gets a higher CLIPScore while scor-
ing low in the human experiments. This could be due
to both the model and the metric relying on CLIP (Sta-
ble Diffusion v1.5 uses the pretrained text encoder CLIP
ViT-L/14 as conditioning component). The textual in-
version fine-tuned approaches, for example, perform the
poorest according to CLIPScore. Fine-tuning with this
method trains in the textual embedding space, thus makes
changes to the text encoder component, which would re-
inforce the assumption. Note that while the positive cor-
relation of CLIPScore suggests that this reliably captures
human perception, there could be other explanations for



this positive result that we cannot rule out based on our
user studies alone. For instance, if the generated images
always showed the same (or very similar) facilities, this
could lead to high scores in our user studies. Heterogene-
ity of facilities was not enforced in those models that did
not use layout inputs. As both the generating models as
well as the score use CLIP backbones, such cases could be
regarded as a case of overfitting. This problem has been
widely acknowledged: the more expressive the models,
the more difficult benchmarking becomes as it can be
difficult to ensure a clean train-test split [53].

For (c) structural alignment, the approaches using ad-
ditional image input specifying the precise layout of a
facility would, mostly outperform the ones using only
text conditioning. This holds true for most of the meth-
ods except for (2) DB T2I, which scores highest in terms
of alignment – but uses only textual input and no layout
input (see Table 4). The reasons for this are unclear, one
explanation could be that the user study design was not
adequate enough to measure the structural control, or the
instructions were not clear enough. Since we only have
the human ratings to interpret, comparative analysis to
other metrics is not possible, thus, a broad and robust
evaluation is difficult. The layout alignment - with still
considering different rotations and angles from the same
target object - is an aspect which has not been thoroughly
evaluated in literature yet and could be investigated in
further research.

Looking at the evaluation of generative models and
their outputs, the question is also raised whether human
judgement should be the standard for assessing image
quality: Human perception should be used as benchmark
when the goal is to approximate this through a metric.
However, approximating human perception is not nec-
essarily relevant for all use cases, as also raised in other
work [36]. In fact, some of the most interesting applica-
tion scenarios, such as generating new training data for
ML models, do not involve human perception directly.

Societal implications In the context of public inter-
est, human-centric approaches and human-in-the-loop
methods are important to understand the risks of ML
technology [54, 55]. For instance, previous work in com-
puter vision has demonstrated that it is possible to de-
couple human perception from machine perception with
synthetic imagery [56]. Complementing this work on di-
vergent perception between humans and machines, our
findings show a misalignment between human visual
perception and automated evaluation, which provides
a flawed foundation and benchmark for future develop-
ment of novel ML technologies. Albeit the participants
in our studies are no experts in the domain, they are
representatives of the general public. Given fabricated
or generated imagery, spreading misinformation is even
easier when people are not familiar with such niche con-

tent. Works addressing information manipulation via ML
and crowdsourcing have gained traction within the “AI
for Social Good” community [54], possibly due to the
rise of fake news, deepfakes and their effortless distribu-
tion through mass media. With easily available technol-
ogy, virtually anyone can produce synthetic imagery that
can, as shown in our experiments, fool the average user.
Systems being open to validation by, e.g. being open-
source, is necessary for transparency [57]. However, an
ill-intended user could use such powerful open-source
technology for malicious purposes. In our studies, gener-
ated images look authentic enough for users to assume
they are real, which, depending on the content, could
have implications of public interest for citizens.

6. Conclusion
In this work, we have leveraged a pre-trained vision-
language model and fine-tuned it to generate synthetic
satellite imagery of a rare object class, which has been
underrepresented in literature before. Moreover, we con-
ducted large-scale human-in-the-loop experiments to
measure human judgement and compared it with estab-
lished metrics in the field. We found that additional image
input mostly gives more control over the image compo-
sition, however, it still remains very difficult to control
specific details and generate images of the same exact
object with the presented conditioning methods. Our
results demonstrate that fine-tuning can help generate
imagery of specific images and target objects that are on
par with data generated from the original base model,
in terms of perceived image quality, but that are more
suitable for the remote sensing domain and better display
the desired satellite perspective. Consistent with previ-
ous works, we confirm that established state-of-the-art
metrics to evaluate synthetic imagery do not necessarily
align with human perception, at least regarding image
fidelity. Our findings show that the IS and its adapted
version even correlate negatively. CLIPScore seems to
work fairly well for measuring image-text alignment, but
might be biased towards models based on CLIP. Overall,
we find that large-scale user studies are needed to assess
synthetic data in regard to human perception, especially
for rare classes, where a broad variety of automated eval-
uation metrics is not available.

For future work, these experiments could be conducted
on an even larger scale and for various datasets also in
other domains, to investigate whether the findings of this
work generalize to other use cases. In line with previous
work, our results provide empirical evidence that current
established metrics do not work well for measuring hu-
man judgement, especially for rare objects and domains
that contain imagery dissimilar to natural images. The
quantitative evaluation with automated metrics in genAI



requires a more in-depth study and remains an open field
of research, not only for the sake of evaluation itself:
Better understanding of the perceived image quality will
enable researchers to improve generative models in the
future.
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