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Abstract
This paper introduces Propositional Claim Detection (PCD), an NLP task for clas-
sifying claims to truth, and presents a publicly available dataset for it. PCD is appli-
cable in practical scenarios, for instance, for the support of fact-checkers, as well as 
in many areas of communication research. By leveraging insights from philosophy 
and linguistics, PCD is a more systematic and transparent version of claim detection 
than previous approaches. This paper presents the theoretical background for PCD 
and discusses its advantages over alternative approaches to claim detection. Exten-
sive experiments on models trained on the dataset are conducted and result in an F

1

-score of up to 0.91. Moreover, PCD’s generalization across domains is tested. Mod-
els trained on the dataset show stable performance for text from previously unseen 
domains such as different topical domains or writing styles. PCD is a basic task that 
finds application in various fields and can be integrated with many other computa-
tional tools.

Keywords Misinformation · NLP · Claim detection · Truth-values

Introduction

Extracting meaning from text is a central part of communication research and in 
the recent years this is increasingly done with the aid of computational methods 
[1]. This paper introduces a (German-language) dataset for Propositional Claim 
Detection (PCD), a Natural Language Processing (NLP) task that aims at classify-
ing sentences that can be true or false. Models trained on this dataset can be used 
for various purposes in communication research and beyond. One natural domain 
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of application is misinformation. PCD is in line with previous approaches to claim 
detection that aim at the support of fact-checkers by identifying claims that poten-
tially carry misinformation [2].

Sentences that can be true or false are known in philosophy and mathematical 
logic as sentences with propositional content. As propositional sentences are almost 
exclusively declarative sentences, PCD mostly leverages grammatical information 
(e.g., word order, punctuation, or tense) for classification. Grammatical or syntacti-
cal information has often been neglected in computational methods for social sci-
entific research [3]. However, it has useful properties that are beneficial to methods 
like PCD. A core assumption of this paper is that the grammatical information that 
is leveraged by PCD remains relatively stable across domains and accordingly PCD-
models can be used in various contexts and purposes. The guiding questions of this 
paper are if PCD can reach competitive results to other approaches to claim detec-
tion and if these results remain stable across texts of different topical domain, time 
periods or writing styles. As it will be shown, both questions have a positive answer.

This paper makes multiple contributions: (1) a new task design for the detection 
of claims is introduced, (2) a dataset for PCD is described and made publicly avail-
able, (3) an array of models is tested on the dataset with a special focus on domain 
adaptation.1

Background

Automated fact‑checking

Guo et  al. [4] provide a survey of different sub-tasks for automated fact-checking 
and find research on claim detection, retrieving previously checked claims, claim 
verification, and generating a textual justification for a verdict. Especially claim ver-
ification has received much attention (see e.g., [5, 6] for a survey on the related task 
of stance detection). For this task, a model is supposed to derive an evidence-based 
verdict (true, false, etc.) for a given claim. However, there has been critique on this 
task. Glockner et  al. [7] argue that many approaches are developed and tested in 
an unrealistic setup and cannot refute real-world misinformation. Also, Nakov et al. 
[8] find that human fact-checkers have little trust in a fully-automated pipeline and 
rather find interest in tools like claim detection that only aim at partial automation.

Models for claim detection are trained to identify claims that potentially carry 
misinformation. The aim is to decrease the workload of human fact-checkers by pro-
viding a pre-selection of relevant claims that can then be verified. A claim is usually 
understood as one isolated sentence and claim detection is most often designed as a 
binary sentence classification task. But there are also exceptions. Arslan et al. [2] use 
a taxonomy with three classes, Konstantinovskiy et al. [9] have seven classes, and 

1 The code can be found on https:// github. com/ SamiN enno/ Claim- Detec tion and the dataset is available 
on Gesis: https:// search. gesis. org/ resea rch_ data/ SDN- 10. 7802- 2538? doi= 10. 7802/ 2538.

https://github.com/SamiNenno/Claim-Detection
https://search.gesis.org/research_data/SDN-10.7802-2538?doi=10.7802/2538


1 3

Journal of Computational Social Science 

Gencheva et al. [10] model it as a rating task. However, often even these approaches 
are tackled in a binary format, too [11].

The most notable approach to claim detection is the Claimbuster-project2 that 
contributed a widely used dataset [2] and built models that achieved strong results 
on it [11]. In their, and most other formulations, claim detection is the task of clas-
sifying checkworthy claims (Table  1). Checkworthiness is defined differently by 
different authors. In case of Arslan et  al. [2] checkworthy claims are understood 
as “factual claims that the general public will be interested in learning about their 
veracity”. Alam et al. [20] asked the annotators to label a sentence as checkworthy 
if the they could affirm the following question:” Do you think that a professional 
fact-checker should verify the claim in the tweet?” A third approach was taken by, 
for example, Shaar et al. [14], who matched sentences from US-presidential debates 
with factchecking articles by PolitiFact and labeled them as checkworthy if there 
was a corresponding article.

This and similar definitions have also attracted criticism. Allein and Moens [21] 
note that checkworthiness depends on the prior knowledge of a person, which makes 
the concept inherently subjective. They conclude that checkworthiness is an inapt 
concept to guide claim detection. One can add that the definition’s reliance on “the 
general public” is already idealized as the public is often fragmented and different 
social groups differ in their values or political ideologies. Both aspects are relevant 
to determine if a claim should be fact-checked.

Arguing that checkworthiness is an editiorial decision that is best left to human 
fact-checkers, Konstantinowskiy et al. [9] propose an alternative formulation of the 
claim detection task. They focus on factual claims, understood as sentences about 

Table 1  F: factuality and CW: checkworthiness

CW*: checkworthiness is understood as “being of interest to the general public”, CW**: “should be 
checked by a professional factchecker”, and CW***: retrieved the label by matching actual factchecking 
articles

Corpus Rows Label Best score Source

Claimbuster [2] 23,533 CW* F1 = .91 US-Presidential Debates
CT19 [12] 23,501 CW*** MAP = .17 US-Presidential Debates
CT20 [13] 962 CW** MAP = .81 Tweets on COVID-19
CT21 [14] 45,619 CW*** MAP = .40 US-Presidential Debates
CT22 [15] 2891 CW** F1 = .70 Tweets on COVID-19
TATHYA [16] 15,735 CW*** F1 = .26 US-Presidential Debates
Claimrank [10] 5415 CW*** MAP = .43 US-Presidential Debates
IndianClaims [17] 953 CW* F1 = .70 Indian political debates
C/NC [9] 4777 F F1 = .83 UK political TV-shows
Germeval [18] 4188 F F1 = .76 Facebook Comments
LESA [19] 9981 F F1 = .89 Tweets on COVID-19

2 https:// idir. uta. edu/ claim buster/.

https://idir.uta.edu/claimbuster/
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statistics, legal affairs, or causal relationships and opposed to sentences about per-
sonal experiences like “I woke up this morning at 7 a.m.”. Risch et  al. [18] and 
Wilms [22] created a German language dataset for the same task. However, in their 
taxonomy, a positive example is a claim to truth or a sentence that provides exter-
nal evidence (links, quotes, etc.) rather than internal evidence (personal experience). 
Gupta et al. [19] define a claim as stating or asserting that something is the case, 
with or without providing evidence or proof. They use a similar scheme as the previ-
ous authors but they also consider personal experiences and humor/sarcasm as posi-
tive instances. All three approaches reach strong results (see Table 1).

Computational linguistics

A line of research in computational linguistics that shares many similarities to 
PCD is Dialogue Act classification (DA). One famous corpus is the Switchboard 
Dialogue Act corpus (SwDA) that was originally introduced by Jurafsky et al. [23] 
and provides a fine-grained labeling scheme of 43 classes that involve, for exam-
ple, opinion-statements, non-opinion-statements, or different types of questions. The 
task is approached as text classification but also as sequence labeling and there have 
been attempts [24] that reach scores of 82.9 in F1 (and 91.1 on the MRDA corpus 
[25]). DA and PCD follow the same theoretical tradition that is based on the works 
of Austin and Searle.

Argumentation Mining (AM) is closely related to claim detection as it aims at 
identifying the components of an argument and their relation. Similar to claim detec-
tion, extracting claims lies at the heart of AM. However, their definitions are not the 
same. In AM a claim is understood as a conclusion rather than a premise [e.g., [26]], 
while for claim detection both can be claims. Moreover, often sentences or textual 
spans that are understood as claims in AM would rather qualify as opinions from the 
perspective of claim detection.

The structure of propositional claim detection

Propositional content

PCD is about detecting sentences with propositional content. This term is used in 
philosophy and mathematical logic and denotes sentences that have a truth value, 
i.e., that can be true or false [27]. The concept of truth value is different from the 
concept of truth. Sentences that have a truth value are possibly but not necessarily 
true. They can also be false. Take the sentences “All cows are ruminants.” and “Are 
all cows ruminants?” Even without knowing the word “ruminant”, one can acknowl-
edge that the first sentence can be true or false but the second cannot. Accordingly, 
we do not need to know if a sentence is true, in order to know that it has a truth 
value. Note that sentences with truth values are a broader class than factual sen-
tences and the two sentence types should not be confused (see “Discussion” section).
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Sentences that carry a truth value meet two minimal conditions: (1) the sentence 
must have a condition of satisfaction and (2) this condition must have a word-to-
world direction of fit. For a sentence to have a condition of satisfaction is to have a 
relation to the world that can be fulfilled.3 For example, saying that Japan has a total 
population of (roughly) 125 million relates to the world and it is satisfied because 
Japan does have about 125 million citizens (a). Saying that Japan has the dirtiest 
streets worldwide also relates to the world but it is not satisfied because Japan’s 
streets are extremely clean (b). And if the Japanese digital minister pledges that the 
government will offer more digital services, his sentence relates to the world and it 
is satisfied if the government actually manages to provide more digital services (c). 
However, other sentence types like apologies or congratulations cannot be satisfied. 
If the digital minister of Japan apologizes for not providing more digital services, his 
utterance cannot be satisfied. The purpose of his statement is neither referring to a 
desired future state of affairs nor is it a statement that can be true or false. It is meant 
as an apology, which is something different.

The second condition is a word-to-world direction of fit. This term dates back 
to the works of John Searle and is opposed to the world-to-word direction of fit 
(see [28, p.  100ff.]). Examples (a) and (b) share a word-to-world direction of fit. 
This means that sentences (a) and (b) must correctly represent the world in order 
to be satisfied. Sentence (a) does that while sentence (b) is a misrepresentation of 
the world. In such cases, we speak of propositional sentences, i.e., of sentences that 
carry a truth value. Opposed to this are sentences like (c) that have a world-to-word 
direction of fit. What the digital minister pledges is not intended to correctly repre-
sent the world. Instead, the world is supposed to adapt to the words of the Japanese 
digital minister so that we can say that his promise is fulfilled.

PCD taxonomy

As the purpose of PCD is to detect sentences that carry a truth value, the task is to 
identify sentences that (1) have a condition of satisfaction and (2) a word-to-world 
direction of fit. For reasons that will be explained shortly, PCD also adds a third 
condition: (3) the sentence must be in the present or past tense. Sentences that meet 
conditions (1)–(3) are called assertions. They are sentences in the past or pre-
sent tense that carry truth values. Sentences that only meet conditions (1) and (2) 
but are in the future tense are called predictions. Sentences that meet condition 
(1) but not (2) are called opinions. Opinions have a world-to-word direction of 
fit and can be put in any tense. Sentences that neither meet condition (1) nor (2) are 
called other (Table 2).

PCD’s structure can be mapped to the (German) grammatical structure in large 
parts but not entirely. The most obvious correlation is tense as it is a grammati-
cal concept. However, there is more. The German language knows five grammati-
cal sentence types: declarative (statement), interrogative (question), imperative 

3 Note that “world” is not limited to the physical world in this context. Sentences about, for example, 
mental states or social constructions do also have a relation to the world.
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(command), exclamation (affect), and optative (wish) sentences (see, for example, 
[29]).4 Sentences that have a condition of satisfaction are almost exclusively declara-
tive sentences. Declarative sentences are sentences in which the verb comes at sec-
ond position and the sentence ends with a period sign.

The reduction of propositional sentences to declaratives, however, is an imperfect 
one. An exception are rhetorical questions, that can carry propositional content but 
which do not qualify as declarative sentences. For example, if a Fox News modera-
tor rhetorically asks if the 2021 US-election was stolen, it can often be understood 
as a statement that the election results are not legitimate. This shortcoming is, for 
the moment, accepted and must be subject to future work.

While the difference between assertions and opinions on the one side and 
predictions and other on the other side can be reduced entirely to grammati-
cal criteria, namely tense and sentence type, this is not the case for the difference 
between “assertions” and “opinions”. There is no purely grammatical crite-
rion that exhaustively separates these two classes. In many cases, it is necessary to 
look at the actual meaning of a given sentence in order to classify it as either one of 
the two categories. I will briefly outline some heuristics to differentiate between the 
two classes. More details can be found in the codebook. 

1. Within an argument, assertions often take the supporting role, while opin-
ions require support, i.e., assertions are often used as justifications, while 
opinions need justification.

2. Sentences that express opinions often contain modal verbs like “should” or 
“must”.

3. Assertions often contain quotes. Note that in this case, we evaluate if some-
thing is correctly quoted and not if the content of the quote is correct.

4. Assertions often start with “We see that”, “I know that”, “This proves that”, 
while opinions often start with “I want that” or “It is our opinion that”.

Finally, one last remark about why tense is included in PCD. Tense only matters 
for the distinction between predictions and the other classes. The reason why 
predictions form a category on their own is that PCD is designed to assist fact-
checkers. Fact-checkers are usually not interested in predictions as statements 
about future events can often not be verified.5 Statements about the future do not 
necessarily use the future tense but can also be in the present tense and use temporal 
indicators like “tomorrow”. However, these indicators are dependent on the time of 
utterance. Given that PCD is an NLP task, this matters strongly. Often the time of 
utterance cannot be inferred from the sentence alone but requires contextual infor-
mation or meta-data. In order to avoid this complication, PCD works with the lim-
ited understanding of predictions as declarative sentences in the future tense. 
Another advantage is that this reduces difference of predictions to other classes 
to difference in grammar (tense), which is a key motivation for PCD.
4 Sentences with subordinate clauses are common to the German language. For sentence with multiple 
clauses that fall into different classes, the annotators were told to use the label for the main clause rather 
than the subordinate clauses.
5 https:// corre ctiv. org/ fakte ncheck/ faq- haeufi g- geste llte- fragen- an- das- fakte ncheck- team/.

https://correctiv.org/faktencheck/faq-haeufig-gestellte-fragen-an-das-faktencheck-team/
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Data selection and annotation

The dataset for PCD consists of a diverse set of (German) sources: Newspaper arti-
cles (Die Zeit, Tagesschau, Tagesspiegel, taz, Süddeutsche Zeitung), political TV 
shows (Anne Will and Hart aber Fair), party manifestos,6 and tweets.7 This broad 
array of text sources is meant to cover spoken and written text on the one side and 
formal and casual writing styles on the other. The time period that is covered in the 
dataset ranges from 1994 to 2022 with a special focus on the years at which national 
elections took place.

There were 4 coders in total: three student assistants, who were paid according to 
the collective agreement for student employees, and the author. The training was fol-
lowed by an evaluation in which all coders had to annotate the same 225 sentences. 
They achieved a Krippendorff’s alpha of 0.72 and then started the actual annota-
tion process. The entire coding process, including the training, lasted about three 
months, with weekly workloads of about 400–700 sentences. To increase the output, 
about one third of the sentences were annotated by only one coder each. In order to 
speed up the annotation process, there was a rule-based (Regex) pre-annotation for 
predictions and other. These classes could be filtered with high (but not full) 
accuracy and were double-checked by a human coder. The remainder of the sen-
tences was coded by at least two coders each. The entire process resulted in a total 
of 8425 annotated sentences. For more information on the annotation process, see 
“Appendix A”.

For the optimal use of the limited resources, a pool-based Active Learning 
(Active Learning, for short) approach was chosen for selecting the data for anno-
tation (Settles, 2010). The core assumption for Active Learning is that during the 
annotation process, the quantity of possible annotations is limited (due to financial 
and/or time constraints) but there is (almost) unlimited access to unlabeled data. 
The unlabeled data is called the pool. One way to choose the data for annotation 
is to randomly sample from the pool. In Active Learning, samples from the pool 
are chosen in multiple rounds and according to a “smart” method. There are vari-
ous methods for doing that and they all have the purpose of choosing samples such 
that they are more informative for the model and it learns better and faster than if 
they were sampled randomly. The result is that less data is required for the model to 
achieve good results. The data was drawn from three pools of different text sources 
(Table 3). For more information, see “Appendix B”.

6 https:// manif esto- proje ct. wzb. eu/.
7 https:// zenodo. org/ recor ds/ 76700 98.

https://manifesto-project.wzb.eu/
https://zenodo.org/records/7670098
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Method

Consensus labels

It has been recognized that data quality is essential for machine learning and often 
fixing data issues improves model performance much more than model-centric 
approaches like hyperparameter tuning. One area of data-centric AI is label quality: 
there is research on how to find the best consensus label given multiple conficting 
annotations and there is research on reducing label noise, i.e., detecting mislabeled 
data points.

For the present study multiple techniques were evaluated in order to derive the 
final label for a given sentence: (1) strict majority vote, (2) soft majority vote, 
(3) Confident Learning [30], (4) CROWDLAB [31], (5) Confident Learning + 
CROWDLAB.

(1) and (2) are the most basic strategies. For the strict majority vote, only sen-
tences that were seen by 2 or more annotators were included. In case of an agree-
ment ≤ 0.5 the sentence was discarded. For the soft majority vote, no sentence was 
discarded and ties were dissolved hierarchically: assertion > opinion > 
prediction > other. Strategies (3)–(5) are rather sophisticated and based on 
more assumptions. They are briefly outlined, however, for a more thorough discus-
sion, see “Appendix C” and “Appendix D” and the original papers.

Confident Learning is a method to detect mislabeled data points. Label errors can 
come in different shapes, for example, if a data point is assigned to the wrong class 
or if it belongs to multiple classes but is only assigned to one class. Confident Learn-
ing is a method to determine if a mismatch between a model prediction and a gold 
label is because the model failed or because the gold label is incorrect. A machine 
learning model or ensemble is leveraged to predict a probability for each label that 
indicates if the label is correct or not. For the present study, Confident Learning was 
used to remove all sentences whose gold labels were marked as incorrect.

CROWDLAB is a method to find consensus labels for multiple and possibly 
conflicting annotations. This method is based on two criteria. First, the annotator 
quality for each coder is computed. The annotator quality is understood as the level 

Table 3  Data sampling with active learning

Each round a batch of sentences from one of three pools of different text sources was actively chosen. 
Due to a mix-up it was not possible to assign the sentences from social media in round 5 to their correct 
round. This is indicated by the brackets

Round Pool No. sentences News (%) Protocol (%) Talk show (%) SoMe (%) Manifesto (%)

1 1 1426 26 25 24 24 0
2 1 1207 31 30 27 11 0
3 1 942 25 34 0 41 0
4 2 1342 0 21 0 52 27
5 3 1795 31 42 0 (2) 25
Rule All 1713 21 42 7 25 4
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of agreement of one coder with the others. A coder who is often in line with the 
annotations by the others, receives a high quality score. Second, a machine learning 
model or ensemble is trained on the data and its predicted probabilities for each sen-
tence are also taken into consideration for deriving the final label. Metaphorically 
speaking, the model simulates an additional annotator. By computing the annotator 
quality and simulating an additional annotator, it is possible to derive a label quality 
score even for sentences that were seen by only one annotator. For the present study, 
CROWDLAB was used to compute a quality score q ∈ [0, 1] for each label so that 
labels with a score below a certain threshold (< 0.7) were removed from the dataset.

The detailed results for all of the mentioned methods can be found in “Appen-
dix  E”. Methods (3)–(5) showed only little improvement compared to the strict 
majority vote and the soft majority vote performed relatively weak. For the final 
labels, strict majority vote was chosen, as it is a relatively simple method but per-
formed well. The final dataset consists of 5373 sentences. The class and document 
distribution is displayed in Fig. 1. Other and assertion occur at a roughly equal 
amount and so do opinion and prediction. However, the first group makes up 
about 70% of the dataset, while the second group makes up the remaining 30%. The 
most frequent document type are protocols, followed by sentences that were drawn 
from Twitter.

Model selection

Six different embedding methods were used: BoW, Tf-idf, Word2Vec [32], GloVe 
[33], Fasttext [34], and Sentence Transformer [35]. The first two were calculated 
using the scikit-learn implementation with the default parameters. Pre-trained 
embeddings for Word2Vec and GloVe were retrieved from Deepset8 and Fasttext 
embeddings were calculated using the flair-library [36]. All three were pre-trained 
on a Wikipedia corpus and their vocabulary is pre-defined. Since all three are word-
level embeddings, they needed adjustment to sentence-level. Sentence embeddings 
were calculated by taking the mean of each word embedding of a sentence. Words 
that did not occur in the pre-defined vocabulary, were ignored.

Fig. 1  Class and document distribution of final dataset

8 https:// www. deeps et. ai/ german- word- embed dings.

https://www.deepset.ai/german-word-embeddings
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Logistic Regression, Support Vector Machine (SVM), and Naive Bayes (Multi-
nomial for BoW and Tf-idf and Gaussian for the other embeddings) were chosen 
as classical machine learning architectures. Ensemble Methods were included, too: 
Random Forest, AdaBoost, and XGBoost. All these models were implemented using 
scikit-learn with the default hyperparameter settings.

A set of transformer architectures were chosen as representatives of Deep Learn-
ing: The German base versions of Bert, Electra, Roberta9 (called GottBert, see 
[37]) and DistilBert10 as they can be found on Huggingface. It is expected that the 
transformer architecture, which is a driver for much of the recent progress in NLP, 
outperforms the classical architectures. However, transformer models require much 
computational resources and are more difficult to interpret than smaller models like 
SVM. For this reason, a broad selection of model architectures is evaluated.

The transformer-models were trained for 5 epochs and a batch size of 32 with 
the default hyperparameters implemented by the transformers-library (learn-
ing rate: 5e−5; weight decay: 0.0). Grid search over the number of epochs, batch 
size, learning rate, and weight decay was performed, however, none of the settings 
improved over the default settings.

Recall can be considered the most important metric for claim detection as it indi-
cates how many of the relevant claims were actually found. However, high recall 
should not be achieved at the expense of precision because this means that the sys-
tem also retrieves a lot of irrelevant claims. In this case, the difference does not 
matter strongly because for almost all experiments recall and precision are roughly 
equal. I therefore mostly report F1 as the harmonic mean of precision and recall. All 
scores were obtained by averaging over the 10-fold stratified Cross-Validation.

Fig. 2  Performance of classical machine learning models

9 https:// huggi ngface. co/ uklfr/ gottb ert- base.
10 https:// huggi ngface. co/ disti lbert- base- german- cased.

https://huggingface.co/uklfr/gottbert-base
https://huggingface.co/distilbert-base-german-cased


 Journal of Computational Social Science

1 3

Results

(Transformer‑) models show strong Performance

Figure 2 displays the scores for the traditional machine learning models and for 
different embeddings. The scores reach from as low as 0.23-−0.72. There is no 
unambiguously best performing model. SVM shows the best performance in 
combination with GloVe, Fasttext, and transformer embeddings but not with the 
other embedding techniques. However, it turns out that Naive Bayes and Random 
Forests perform poorly for each embedding.

The results for the transformer architectures can be found in Table 4. As men-
tioned before, the performance remains constant across different metrics. The 
best performing transformer models are Bert and Electra with scores of 0.91 for 
all available metrics. DistilBert follows closely with a difference of 0.01, while 
GottBert performed worst of all transformer models. Nevertheless, the scores 
of the transformers are consequently higher than those of the classical machine 
learning models.

Figure 3 displays the performance of DistilBert, as it performed strongly in the 
previous tests and requires the least computational workload of all of the trans-
former models, depending on the individual class labels and document types. The 
highest class confusion is between assertions and opinions. The perfor-
mance depending on the text type is balanced. There is no class for which the 
scores are much lower than for the others. Nevertheless, one can see that the 
model performance is weaker on sentences from manifestos and Twitter.

Table 4  Performance of 
transformer models

Model Accuracy F
1

Recall Precision

DistilBert 0.90 0.90 0.90 0.90
GottBert 0.88 0.88 0.88 0.88
Electra 0.91 0.91 0.91 0.91
Bert 0.91 0.91 0.91 0.91

Fig. 3  Confusion matrix and performance by document for Distilbert
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Models adapt well to new domains

As mentioned in the introduction and discussed in the next section, one guiding 
assumption of this paper is that the reduction of class differences to grammatical dif-
ferences (word order, punctuation, tense, etc.) leads to a strong generalization across 
domains. In order to test this hypothesis, several experiments were conducted on 
DistilBert.

For simulating new domains, the dataset was split according to different crite-
ria (Table 5). To test generalization across different topical domains, all sentences 
that dealt with the “Turn of Eras”-speech by the German chancellor Olaf Scholz 
were separated and used as test set, while the remaining sentences were used as 
training set. The same was done for sentences about the German discussion about 
a mandatory vaccination during the COVID-19 epidemic and for sentences about 
the climate summit in Glasgow in 2021 (COP26). In order to test adaptation across 
text sources, the same procedure was conducted but the splitting criterion was if 
the sentences were drawn from parliament protocols, tweets, talkshow transcripts, 
newspaper articles, or party manifestos. It is expected that depending on the source, 
the texts have a rather monologic/dialogic or formal/informal character. Finally, the 
dataset was split according to the time period of the sentences. Some were drawn 
from the 20th century (1994–1998) and others from the 21st century (remainder). 
Note that for the sentences from the 20th century, data augmentation was performed 
due to scarcity.11

It can be observed that the performance remains high ( F1 ≥ 0.87) and roughly 
constant across different domains. There are two exceptions. The model did not per-
form well on sentences from the 21st century. However, this is most likely because 
data from 1994 to 1998 is scarce and augmentation was only of limited help. The 

Table 5  Domain adaptation for 
Distilbert

Test domain Accuracy F
1

Recall Precision

Vaccination 0.93 0.93 0.93 0.93
COP26 0.93 0.93 0.93 0.93
Turn of eras 0.93 0.93 0.93 0.93
Protocol 0.90 0.90 0.90 0.90
Twitter 0.83 0.82 0.83 0.82
Talkshow 0.91 0.91 0.91 0.92
Newspaper 0.88 0.89 0.88 0.89
Manifesto 0.87 0.87 0.87 0.88
20th century 0.90 0.90 0.90 0.90
21st century 0.80 0.79 0.80 0.80

11 For data augmentation back-translation between German and English/Spanish was performed. For 
back-translation, text is translated to a different language and back to the original language. The assump-
tion is that this process causes slight changes in the exact wording without changing the meaning of the 
sentence. The altered sentence are added to the data.
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other exception is the relatively weak performance on Twitter data. However, the 
reduction to an F1-score of 0.83 is still moderate, given the model did not see any 
social media data during the training phase.

Classifications are based on the intended criteria

It is argued that the strong domain adaptation is due to PCD’s reduction of class 
differences to differences in grammar. The grammatical indicators for the different 
classes can be found in Table 2. For example, assertions often come in the form 
of quotes and are therefore marked by a colon and quotation marks. Opinions on 
the other side often contain modal verbs like can, should, or must. In order to find 
out if these indicators contribute to the classification by a PCD-model, an analysis 
using Shapley additive explanation (SHAP) values was conducted [38].

SHAP values are a measure of feature importance. SHAP values assign impor-
tance to features of individual examples, which leads to local explanations. Since 
PCD is for sentence classification, SHAP values indicate the importance of indi-
vidual words or sub-words, depending on the embedding, for the classification of 
a given sentence into one of the four classes. For global explanations, i.e., explana-
tions about the model’s general behavior, it is possible to apply tendency measures, 
like the mean, on a sample of multiple examples. For the present study, SHAP val-
ues were computed for each sentence using 10-fold cross-validation.

Figure 4 shows the most important words for a given class for DistilBert, meas-
ured as the mean SHAP value of the given word with respect to each of the four 

Fig. 4  SHAP-values for groups of class-relevant words
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possible labels in the data set. The top 5 words are the most influential words for the 
given class. For opinions there are many subjective words (sympathy, interest-
ing, hopefully), which aligns with the expectations. However, for the other classes 
it is difficult to make sense of the results. The next section includes conjugations of 
“to say”, colons and quotation marks, which indicate quotes and which are strongest 
for assertions. The following section displays the importance of modal verbs 
and they are strongest for opinions. The fourth section displays the class-wise 
mean SHAP-values for “werden” (will) in different conjugations. Since this is the 
auxiliary verb for the future tense, it is the strongest for predictions. Finally, the 
class-wise mean SHAP-values for punctuations are displayed. As other consists 
mainly of questions and exclamations, we should expect question and exclamation 
marks to be of strong importance to this class. This is the case and, moreover, the 
period sign is very weak for other and strong for assertions. These results 
indicate that the model successfully picked up the criteria that were indicative for 
each class and which were guiding the human annotators. This might not come as a 
surprise but it shows that the model did not learn spurious correlations.

Discussion

PCD is more neutral and open than its alternatives

Claim detection is the task to identify claims that potentially carry misinformation. 
The practical goal is to provide a pre-selection of claims to fact-checkers in order to 
decrease their workload. Most approaches try to detect checkworthy claims, which 
is a notoriously vague term. In line with Konstantinovskiy et al. [9], PCD drops the 
notion of checkworthiness and focuses on claims to truth. However, PCD focuses on 
sentences with propositional content rather than on factual claims.

Propositional content is a broader notion than factuality. For example, a descrip-
tion of a personal experience like “I woke up this morning at 7 a.m.” qualifies as a 
sentence with propositional content but not as a factual sentence according to the 
definitions by the other accounts. This is intentional and based on the assumption 
that factuality depends on the context. It might not be relevant from the perspective 
of fact-checking or misinformation at what time an average citizen woke up. But it 
might be relevant if the sentence was uttered by a politician. In this sense, PCD is 
a radicalization of factual claim detection because it makes even less assumptions 
about what is relevant for fact-checking and focuses exclusively on the fact that mis-
informing (as well as informative) sentences must carry truth values.

PCD shares a limitation with factual claim detection: it lacks a criterion for prior-
itizing one claim over another. Fact-checkers are not interested in simply any claim. 
Checkworthiness adds a notion of importance to the task and orders the claims 
according to their relevance. It was argued that checkworthiness is a problematic 
concept but nevertheless dropping it altogether leaves a gap that must be filled 
because it limits the applicability of claim detection.
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The British factchecking organization Full Fact reports that by applying the 
models of Konstantinovskiy et  al. [9] to parliament debates, Facebook posts, and 
Tweets, the output is roughly 80.000 claims per day.12 Naturally, this is too much for 
manual analysis. For further filtering, they use heuristics. Certain topics like Sports 
or Celebrities are dropped and not forwarded to the factcheckers. In other words, 
focusing exclusively on claims to truth or factual claims is not enough. The models 
must be enriched by further selection criteria (a possible candidate is discussed in 
the last section). However, focusing exclusively on the fact that misinforming claims 
are sentences that can be true or false, PCD is strongly neutral and compatible to 
additions.

PCD shows strong performance across domains

It was shown that models can reach strong performance on the PCD-dataset. Even 
though classical machine learning models only reach poor or mediocre scores, trans-
former models achieve F1-scores of 0.9 and more. This is also true for lightweight 
transformer models like DistilBert. In comparison, the strongest performance on the 
Claimbuster-dataset is 0.91 in F1 [11], 0.76 for factual claim detection by [18] and 
0.83 for [9]. The present results are also on the same level with approaches to Dia-
logue Act classification for which some approaches reach an F1-score of 0.91 [24]. 
Accordingly, the question if PCD can reach competitive results can be answered 
positively.

The second guiding question of this paper was if PCD adapts well to new 
domains. It was assumed that PCD’s focus on grammatical information, such as 
tense, word order, or punctuation, enhances generalization across domains. For 
example, most approaches to checkworthy claim detection use data that is drawn 
from US-presidential debates. It can be assumed that occurrences of checkwor-
thy claims in this domain differ strongly from occurrences in other domains like 
COVID-19 or climate change with respect to their meaning and content. In contrast, 
grammatical cues like tense or word order are not affected by the topic. A declara-
tive sentence is a declarative sentence no matter if the topic is COVID-19 or climate 
change.

In order to test this assumption, several experiments on domain adaptation were 
performed. The results showed positive results. This indicates that even though 
no training-dataset can exhaustively cover all possible domains, it is still likely 
that models for trained for PCD adapt well to previously unseen domains. This is 
because PCD focuses on relatively stable features like punctuation or modal verbs, 
as it was tested using SHAP-values.

12 Personal communication.
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Conclusion

This paper introduced Propositional Claim Detection (PCD) and a corresponding 
dataset. It further presented the results of extensive testing on this dataset. The two 
major limitations of PCD set the agenda for future research: It is a shortcoming 
that even though rhetorical questions can carry truth values, they are disregarded 
by PCD. Future research can build on the taxonomony of PCD and add rhetorical 
questions to it. Second, it was argued that checkworthiness is a problematic concept 
but dropping it altogether leaves a gap that must be filled. One possible candidate 
for it are news values [39]. News values or newsworthiness [40] shares similarities 
with checkworthiness but it enjoys a stronger theoretical and empirical grounding. 
Instead of relying on an abstract understanding of “what is interesting to the general 
public” scholars have found various concrete factors like proximity, timeliness, or 
conflict that make an event newsworthy. Furthermore, there have been studies that 
found that certain news values occur significantly stronger in misinformation than 
in “real news” [41, 42]. This can inform the automated detection of misinformation. 
Finally, there has been research on automatically detecting various news values that 
achieves strong results [43–45]. Future research should focus on combining PCD 
and news value detection. The result could be a classifier that aims at checkworthy 
claims to truth but avoids the aforementioned criticism of checkworthiness.

Despite these limitations, PCD is a solid foundation for claim detection: It is 
backed by a transparent taxonomy, achieves strong results and adapts well to new 
domains.

Appendix A: Annotation process

During the annotation process, annotators had difficulties to classify some sentence 
as either assertion or opinion. This problem arose especially for sentences that were 
tautological or strongly metaphorical (see Table 6). On the one side, they did not 
qualify as assertions as it was difficult to determine if they had propositional con-
tent, on the other side they did not match the intuitive meaning of what an opinion 
is. To tackle this problem, we introduced non-checkable claims to truth (NCCT) as a 
fifth category and redefined assertions as checkable claims to truth (CCT).

During the annotation process, it turned out that some classes are more similar 
to each other and hence more difficult to distinguish. The most problematic class 

Table 6  Examples for non-checkable claims to truth

Non-checkable Claim to Truth (NCCT)

He who does not seek, does not find
There is always hope
Since then, I only slide sideways on the motorway in my car, throw turtle shells and engage in littering 

with banana peels
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was NCCT. Originally, it was planned to merge the class with the opinion-class 
and keep it only for the sake of clarity during annotation. However, one of the 
biggest sources of error was that coders did not only disagree between NCCT and 
opinions but also between NCCT and CCT. Due to its similarity to both classes, 
NCCT could not simply be merged with one of them.

To solve the problem, there was a last round of annotation in which the cod-
ers were shown sentences that were labelled NCCT by others but this time there 
was no option to label the sentence as NCCT. Due to this, it was possible to 
merge many sentences that were labelled as NCCT by single coders, with either 
CCT or the opinion-class by performing a majority vote. All sentences that were 
labelled as NCCT by a majority of coders, were dropped for the machine learning 
experiments.

There was a number of sentence types which turned out to be a source of error. 
Vague descriptors: “Germany was a driver of the international process.” What does 
it actually mean to be the driver in a process and can we check this? Implicit expres-
sions of opinion: “With the CO2 price of all things, it is focusing on an instrument 
that will not solve the climatecrisis.” It can be checked if carbon pricing is a suc-
cessful method but this sentence has a condescending sound, which could also be 
an indicator for an opinion. General/Unspecific group descriptions: “For two years 
we all kept our distance, wore masks, minimised contacts.” Who is “we” in this sen-
tence and how could that be checked then? In case of doubt, the annotators were told 
to label CCT but the final decision was left to them.

In order to speed up the annotation process, some sentences were labeled auto-
matically using a rule-based (Regex) approach. Even though it was not possible to 
filter all of the classes with full accuracy, the selection could at least be limited for 
some. Sentences belonging to other or to prediction were partly chosen with 
a rule-based strategy. Since other is partly constituted of questions and exclama-
tions marked by “?” and “!”, sentences containing these signs at the very end were 
filtered. In a second step one human annotator double-checked if these sentences 
were correctly filtered. For example, declarative sentences that quoted a question 
were discarded as they do not belong to other. The same procedure was conducted 
with sentences containing “werden” (will) and conjugations thereof, because this 
auxiliary verb marks the future tense. However, since not every sentence that con-
tains this verb is a prediction, these sentences were also double-checked by a human 
annotator.

Appendix B: Active learning

For choosing the best sentences for annotation, Active Learning was used. One 
major strategy in Active Learning is to sample examples that the model is most 
uncertain about. The underlying assumption is that the model learns more from 
examples it is not certain about than from examples that it is certain about. Uncer-
tainty of a model � is expressed in its prediction probability for the given classes 
P𝜃(ŷ ∣ x) . One Active Learning strategy is called margin sampling [46]:
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where x∗ is the most informative example and ŷ1 and ŷ2 are the first and second most 
likely classes. For example, if the model predicts class A with a probability of 0.8 
and class B with a probability of 0.15 (the rest remaining 0.05 are spread among 
the other classes), the margin is 0.65. This is quite high because the model is confi-
dent in its prediction. If it is uncertain and predicts 0.4 and 0.3 instead, the margin is 
only 0.1. Active sampling in this version, means to compute the margin for all exam-
ples in the pool and then label the ones with the lowest margin.

However, margin sampling takes only the two most likely classes into account. 
The most popular Active Learning strategy, entropy sampling, on the other side, 
makes use of the probabilities for all classes:

Entropy sampling is about finding sampling examples from the pool that have the 
largest entropy. The larger the entropy, the closer the distribution to uniform. A uni-
form distribution of the class probabilities means that the model finds all classes 
equally likely, which expresses a maximum degree of uncertainty.

For the present data set, entropy sampling seemed like a good strategy. However, 
one weakness of entropy (and margin) sampling is that it introduces a bias towards 
the model that is used to calculate the uncertainty. A transformer architecture and 
a logistic regression might have different prediction probabilities even if it is the 
same example and they were trained on the same data. Therefore, consensus entropy 
sampling was chosen. Instead of calculating the predictions probabilities on the 
examples from the pool for only one model, an entire ensemble of models is used. 
Entropy is then calculated on the mean of their prediction probabilities. The ensem-
ble that was used consisted of a logistic regression, a support vector machine, and a 
XGBoost classifier as they come in the scikit-learn implementation. Furthermore, 
the ensemble consisted of two transformer architectures. One using the German base 
version of Bert,13 the other using the German base version of Electra14 as they can 
be found on Hugginface. There was no hyperparameter tuning for any model of the 
ensemble.

The data was drawn from three pools in five rounds and afterwards a sample of 
sentences was chosen from all three pools according to the rule-based strategy that 
was described before. The first pool consists of newspaper articles, German politi-
cal TV talk shows, plenary protocols of the German parliament and tweets. All the 
data of the first pool is from the period between 2021 and 2022. The second pool 
consisted of tweets, political party manifestos, and plenary protocols of the German 
parliament. The time period for the second pool was 2017–2019. The last pool was 

x∗ = argmin
x

P𝜃(ŷ1 ∣ x) − P𝜃(ŷ2 ∣ x)

x∗ = argmax
x

−
∑

i

P𝜃(ŷi ∣ x) logP𝜃(ŷi ∣ x)

13 https:// huggi ngface. co/ bert- base- german- cased.
14 https:// huggi ngface. co/ deeps et/ gelec tra- base.

https://huggingface.co/bert-base-german-cased
https://huggingface.co/deepset/gelectra-base
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drawn from newspaper articles, political party manifestos, and plenary protocols of 
the German parliament. The time period for the third pool was 1994–1998.

Appendix C: Confident learning

In the following, Confident Learning [30], i,e, the procedure to derive score and 
threshold for a given label are explained. First, the so-called Confident Joint is 
estimated.

Where ỹ is a (possibly) erroneous label, which is commonly referred to as 
groundtruth label. y∗ is a (unknown) true label that might or might not be equiva-
lent to ỹ . x is a training data example. � is the model (or ensemble) that is used for 
the predictions. x ∈ Xỹ=i is the set of training examples, whose groundtruth label ỹ 
equals i. p̂(�y = j;x, 𝜃) is the predicted probability of model � for example x to belong 
to class ỹ = j , whereas j indicates the class with the maximum probability. tj is a 
class-specific threshold that will be further specified shortly.

X̂�y=i,y∗=j is read as: “The set of examples x whose groundtruth label ỹ equals 
i ( ̃y = i ) but the true class label of x is more likely to be j ( y∗ = j).” And this is 
because the predicted probability for class j is above a certain threshold tj . So the 
pressing question is is now: How is tj estimated?

tj is the mean predicted probability for class j for all examples x that have the 
groundtruth label ỹ = j . An example: Assume for all sentences that have Asser-
tion as groundtruth, the mean predicted probability for Assertion is 0.8. So 
tAssertion = 0.8 . Next, assume that for one sentence x with groundtruth Opinion 
the predicted probability for Opinion is 0.1 but for Assertion it is 0.82 (the 
rest is spread among the other classes). This means p̂(�y = Opinion;x, 𝜃) = 0.1 and 
p̂(�y = Assertion;x, 𝜃) ≥ tAssertion is true. In such a case, we would say that x is falsely 
labelled as Opinion and its true label is Assertion.15

In sum, the score of an example x is the prediction probability for the most likely 
class and the threshold is tj as it was described before. If x’s predicted class j and 
its ground truth label i are not the same and the score of x is above threshold tj , x is 
excluded for this experiment.

X̂�y=i,y∗=j = {x ∈ X�y=i ∶ p̂(�y = j;x, 𝜃) ≥ tj}

tj =
1

|X�y=i|
∑

x∈X�y=i

p̂(�y = j;x, 𝜃)

15 If the prediction probability for Assertion was 0.7 and therefore below the threshold, we would not 
speak of an erroneous label (aleatic uncertainty) but of a erroneous prediction (epistemic uncertainty).
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Appendix D: CROWDLAB

To derive labels with CROWDLAB [31], an ensemble of models is trained on the 
majority labels of the data set (the same ensemble that was used for Active Learn-
ing). The ensemble is treated as a new annotator. In this case as the fifth annota-
tor. In a second step, a weighted ensemble of all five annotators determines a qual-
ity score q ∈ [0, 1] for each label. The higher the score, the more likely the label. 
The weight for the ensemble is dependent on its accuracy on the majority labels. 
The weight of each annotator is dependent on their overall agreement with the other 
annotators (for the exact mathematical formula, see [31]). All labels with a quality 
score < 0.7 were discarded.

There are two advantages of CROWDLAB for the present study. First, due to 
the model as a fifth annotator, it was possible to let some sentences only be seen by 
one annotator and still not rely only on their judgment. This increased the amount 

Table 7  Experiments with different methods to derive a final label

Experiment No. sentences Criteria

E0 5373 Strict majority vote, no confident learning
E1 8425 Soft majority vote, no confident learning
E2 7668 Soft majority vote, confident learning
E3 7314 CROWDLAB labels, no confident learning
E4 7064 CROWDLAB labels, confident learning

Fig. 5  F
1
-scores for different models, different embeddings for each experiment
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of sentence that could be annotated. Second, for the same reason, it was possible to 
break ties in a more reliable fashion than with a majority vote. This allowed us to 
have only two annotators for a sentence, even in danger of a possible tie.

Appendix E

In the following, the detailed results for the different experiments E0–E4 are pre-
sented (see Table 7). Figure 5 displays the (weighted) F1-scores for different models 
and different embeddings on each experiment. All scores are obtained by averaging 
over the 10-fold stratified Cross-Validation. The two most striking observations are 
the high F1-scores for the transformer architectures and that model performance fol-
lows the same pattern on the five experiments, independent of model or embedding. 
The highest score (0.94) was achieved by DistilBert, Bert, and Electra on E4, fol-
lowed by GottBert (0.92). The second-best experiment is E0 (0.88-−0.91). Their F1
-score for each experiment about 0.2-−0.3 points higher than the best F1 of the non-
Deep Learning models, irrespective of the embedding.

With regard to the more traditional models, SVM and Logistic Regression per-
formed the best across the different embeddings. SVM achieved a F1-score of 0.73 
on Fasttext embeddings for E4. The two worst performing models are Naive Bayes 
and Random Forest. They are the bottom two for almost all embeddings.

The F1-score for all models and embeddings follows, with some exceptions, the 
same pattern. E4 is the data set on which the models performed the best, followed by 
E3, and almost-tie between E2, E0, and performance for E1 is by far the worst. This 
indicates that Confident Learning has a positive impact on the models’ performance. 
Especially, the leap from E1 to E2, which is about 0.1 in F1 for the transformer mod-
els, is noteworthy.

CROWDLAB has an effect, too, even though it is less than that of Confident 
Learning and almost the same as strict majority vote. Also, CROWDLAB and Con-
fident Learning do not seem to be mutually exclusive, as CROWDLAB label can 

Fig. 6  Detailed scores. Line chart displays F
1
-score for each document type and experiment
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still benefit from Confident Learning. Also, models performed better on E0 than on 
E1. In other words, strict majority vote yielded better results than soft majority vote. 
This indicates that the labels that were controversial among the annotators, also con-
fused the models during training.

Figure  6 displays the DistilBert scores with a stronger focus on the individual 
classes. The confusion matrices show that the major source of error for all experi-
ments was the confusion of assertion and opinion. This is the strongest for E1, which 
confirms the hypothesis from the previous section: these classes cause the most con-
fusion for humans and models alike. The line chart in Fig. 6 shows the F1-Score of 
DistilBert in E4 relative to the document type. The performance on Twitter data was 
for all experiments the lowest. Given that it is the only social media source in the 
data set and that social media posts are often grammatically flawed, contain incom-
plete sentences, and use emojis, this is no surprise. What is a surprise on the other 
side is that sentences from talk shows achieved the best scores. Since sentences from 
talk shows have the least frequency, one might expect that the model would not per-
form best on them.
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