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ABSTRACT

This article investigates the potential and limitations of using Active Learning 
(AL) to reduce AI’s carbon footprint and increase the accessibility of machine 
learning to low-resource projects. First, this paper reviews the recent literature 
on sustainable AI. The core of the article concerns AL as an emissions reduc-
tion technique. Because AL reduces the required data for model training, one 
can hypothesize that energy consumption – and, accordingly, carbon emis-
sions – also decreases. This paper tests this assumption. The leading questions 
concern whether AL is more efficient than traditional data sampling strategies 
and how we can optimize AL for sustainability. The experiments show that the 
benefit of AL strongly depends on its parameter settings and the data set size. 
Only in limited scenarios does the size reduction outweigh the computational 
costs for AL. For projects with more resources for annotations, AL is benefi-
cial from an ecological perspective and should ideally be paired with model 
compression techniques. For smaller projects, however, AL can even have a 
negative impact on machine learning’s carbon footprint.
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1 Introduction

In their seminal paper on sustainable AI, Strubell et al. (2019) found that train-
ing a single machine learning model (including neural architecture search) 
emits the same amount of carbon as five cars across their entire lifetime. The 
study not only attracted the attention of scholars but also found its way into 
general-interest magazines outside of the machine learning community.1 With-
in the research field, Strubell et al. (2019) triggered a discussion on sustainable 
AI that addresses how carbon emissions from machine learning can best be 
not only documented but also reduced. The current research on machine learn-
ing has been criticized for focusing exclusively on ever-larger models and data 
sets. Applying methods designed to reduce the size of either is necessary to 
keep AI’s carbon footprint low. This article tests the potentials and limitations 
of Active Learning (AL) (Settles, 2009) as a way of decreasing the training 
data size while keeping model performance stable.

AL is a method of sampling high-quality data for annotation by querying a 
pool of unlabeled data. This results in smaller labeled data sets but keeps the 
model performance close to what it would have been with a larger data set. 
Most research on AL is motivated by keeping the time and monetary costs of 
data annotation low. However, in the context of sustainable AI, AL can have 
other advantages. Smaller data sets are sustainable in at least two senses of the 
term. There is the ecological side – smaller data sets shorten model training 
and thereby reduce carbon emissions, assuming that the hardware and energy 
mix remains the same. However, there is also a social side: Smaller data sets 
enhance accessibility because they are easier for low-resource AI projects to 
create and reuse. However, there are computational overheads attached to AL 
itself. This means that while the consequent reduction in data is beneficial for 
ecological sustainability and inclusive research on machine learning, it is not 
clear whether the process of AL is costed appropriately. This requires testing.

The core of this article is a case study of AL with a focus on sustainability. AL 
has been proposed as a method for reducing AI’s carbon footprint (Treviso et 
al., 2022), and it has been subject to intensive research (Settles, 2009; Ren et 
al., 2021). However, there is no empirical research on its potential to reduce 
carbon emissions. This article intends to fill that gap. Two core questions will 
be addressed: 

1 https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-
in-their-lifetimes/

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
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1) How efficient is AL in comparison to typical data sampling methods? 

2) How can we optimize AL’s efficiency?

Efficiency is understood as a trade-off between performance (often measured 
using performance scores such as F1, Accuracy, and BLEU) and computational 
cost (as an indicator for a model’s energy consumption). In other words, this 
article focuses on how we can use AL to achieve high model scores while 
keeping the computational efforts low and using as little energy as possible.

The case study employs popular data sets widely used for text classification. 
The panel comprises data sets of different sizes and different numbers of class 
labels. Therefore, this study’s results give a good indication of AL’s potential in 
the field of text classification and for similar task types. The article makes sev-
eral key contributions. First, it compares AL and typical data sampling strate-
gies in the context of a broad variety of data sets and in terms of carbon emis-
sions for data collection and model training. Second, it conducts experiments on 
different parameter settings for AL with a focus on efficiency, that is, the influ-
ence of parameter choices on model performance and computational costs.

The paper is structured as follows. First, it discusses recent research on AI’s 
carbon footprint, with an emphasis on AL. The method is introduced and 
experimental results are presented. Two main parameters for making AL more 
efficient are identified: reducing the data queried and decreasing the number 
of query rounds. After discussing the efficiency gains associated with the two 
options, the article ends with a section on limitations and recommendations.2

2 Background

2.1 Conceptual Work on Sustainable AI

Since Strubell et al. (2019) published their seminal paper, considerable re-
search on sustainable AI has appeared. To begin with, conceptual work ar-
rived to name the problem. One famous exemplar is van Wynsberghe (2021), 
who distinguishes between AI for sustainability and sustainable AI. The first 
denotes AI or machine learning applications that foster sustainability by, for 
example, making renewable energy sources more efficient or aiming at sus-
tainable development goals more generally. The latter aims at making AI itself 
sustainable by keeping its carbon footprint low. Schwartz et al. (2020) coined 
the term Green AI in contrast to Red AI, with the latter aiming at better perfor-
mance in the sense of higher accuracy, better F1, or some other common met-

2 Code and data can be found on the author’s GitHub page: https://github.com/SamiNenno/Sustainable-Data

https://github.com/SamiNenno/Sustainable-Data
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ric and the former considering not only common performance metrics but also 
efficiency, understood as a tradeoff between performance and computational 
cost. Finally, Kaack et al. (2022) introduce an ample taxonomy that captures 
AI’s impact on sustainability at three levels: computing-related impacts, im-
mediate application impacts, and system-level impacts. In the following, I will 
refer to the issue as sustainable AI but keep in mind the potential for subtle 
differences between the different notions.

2.2 Emission Reductions at Different Stages of the AI 
Lifecycle

Substantial research has concerned itself with reducing AI’s carbon footprint, 
much of it dedicated to model compression techniques. This is no surprise – 
these methods not only foster sustainable AI but can also deploy large ma-
chine-learning models on mobile devices, which adds an economic incentive. 
The most popular example of model compression is quantization. Quantiza-
tion aims to reduce the precision of data types used for machine learning. Full 
precision (float32) is the standard. Using half precision (float16) instead is 
already promising to halve the model’s computational costs. An even more ag-
gressive approach to quantization reduces precision down to the integer level 
(Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023).

Recent surveys (Menghani, 2021; Xu et al., 2021; Treviso et al., 2022) catego-
rize emission reduction techniques broadly into efficient data usage, efficient 
model design, efficient training, and efficient inference. Quantization is an ex-
ample of efficient inference, as are pruning and distillation (Sanh et al., 2020). 
Low-rank approximation is mentioned for model design and parameter-effi-
cient fine tuning (Hu et al., 2021; Dettmers et al., 2023) or workload sched-
uling (Wiesner et al., 2021) for training. Treviso et al. (2022) mention AL as 
a promising method for decreasing the size of training data, which decreases 
training time and, thereby, energy consumption and carbon emissions. Howev-
er, no extant study provides insight into AL’s potential for efficient data usage 
and model training. This article aims to fill the gap.

By focusing on AL, this article tests emissions reduction techniques during 
the training phase. Most research on model emissions focuses on the training 
phase of a machine-learning model. However, as Luccioni et al. (2022) report, 
about 22 % of the emissions for BLOOM were dedicated to hardware man-
ufacturing. According to Wu et al. (2021), at Meta, electricity consumption 
related to machine learning workloads is divided between 31 % for data pro-
cessing, 29 % for training (including experimentation), and 40 % for inference. 
Similar numbers for inference are recorded by Google, who report that 60 % 
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of their electricity usage for machine learning is dedicated to it.3 Elsewhere, 
Nvidia’s CEO is quoted as saying that 80 to 90 % of their monetary costs are 
spent on inference.4 One can reasonably assume that this is correlated with 
electricity consumption. In sum, recent research suggests that inference is the 
main cause of CO2 emissions during the AI lifecycle. Nonetheless, it requires 
adjustment at all stages, and AL is one candidate for the training phase.

2.3 Alternative Approaches to Data Quality

AL is one of many techniques designed to enhance machine-learning data 
quality. Data quality and data-centric AI 5 have received increased interest in 
recent years. Often, high-quality data has a stronger impact on model per-
formance than model-centric methods like hyperparameter tuning. Recently, 
Mitchell et al. (2022) published a comprehensive survey concerning mea-
suring data quality. Another notable line of research is Confident Learning, a 
technique designed to remove label noise from a given data set (Northcutt et 
al., 2022). While making data sets sustainable in the sense that these methods 
enable better reuse, they do not necessarily increase the ecological sustain-
ability of data sets. By contrast, data minimalism (Regneri et al., 2019) has 
a direct environmental impact. This line of research tries to put a (monetary) 
price tag on individual data points. Although it does not aim directly at envi-
ronmental sustainability, it is highly aligned with the project.

The data quality research strand most similar to AL is called data set distil-
lation or data set pruning (Yu et al., 2023).6 As in the case of AL, the aim is 
to reduce the size of the data set. In the case of pruning, this is achieved by 
selecting a subset of the original data set; in the case of distillation, a small 
synthetic data set carries as much information as the original is created. Data 
set distillation was introduced by Wang et al. (2020), who managed to create 
ten synthetic images from the MNIST data set, with which they achieved an 
accuracy of 93.76 % (compared to 99% when trained on all 60,000 images). 
Sorscher et al. (2023) used pruning to discard 20 % of ImageNet while keep-
ing the model performance constant. They mention that a key advantage of 
pruning over AL is that it is a one-shot selection and does not proceed across 
multiple rounds. This is beneficial in terms of computational efficiency.

3 https://ai.googleblog.com/2022/02/good-news-about-carbon-footprint-of.html
4 https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/
5 https://datacentricai.org/
6 Thanks to an anonymous reviewer for pointing me to it.

https://ai.googleblog.com/2022/02/good-news-about-carbon-footprint-of.html
https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/
https://datacentricai.org/
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Keeping data sets small reduces the emissions associated with model training 
(assuming the hardware and electricity mix stays constant). Therefore, apply-
ing methods to reduce data set size while keeping model performance constant 
is one path to sustainable AI. The following section more comprehensively 
introduces AL and its potential to create data for more efficient training.

2.4 Active Learning for Sustainable AI

Active Learning explained
An early description characterizes AL as follows: “The key hypothesis is that if 
the learning algorithm is allowed to choose the data from which it learns – to be 
‘curious,’ if you will – it will perform better with less training” (Settles, 2009). 
From a technical perspective, the key benefit in this description is the improved 
performance. From a sustainability perspective, however, the decrease in train-
ing time is equally important because less training means lower computational 
costs, which often directly translates into decreased carbon emissions. However, 
it is also beneficial in terms of monetary and human resources. With AL, only 
the most informative data points are chosen for annotation, which keeps costs 
low. Therefore, AL can also be viewed as an enabler of low-resource AI projects.

AL stands in contrast to the more traditional or typical approach to annotation 
projects. The following abbreviates this approach as TL, representing typical 
or traditional learning.7 For TL, a data sample is chosen and annotated without 
regard for a(n) (ensemble of) machine model or algorithm. By contrast, AL pro-
ceeds in rounds. There are several approaches to AL (Settles, 2009). Most notable 
are Pool-based AL and Stream-based AL. For the latter, single unlabeled exam-
ples are sequentially sampled. In each round, the example is chosen or discarded 
according to a query strategy (explained in the next paragraph). If the example is 
chosen, it is labeled by what is often called the Oracle. In real-world settings, the 
Oracle is usually one or multiple human annotators. In our setting, the labels are 
taken from existing data sets. After each round, the model is re-trained on the for-
mer data set and the additional example that was just queried. Pool-based AL is 
similar. As in the case of Stream-based AL, it is assumed that there is access to a 
large quantity of unlabeled data. This is called the Pool (see Figure 1. Each round, 
the model is trained on the training set and then the Pool is queried. According 
to the query strategy, n examples are sampled and labeled. This is repeated until 
reaching a desired performance or data set size. The key difference to Stream-
based AL is that Pool-based AL sees the entire unlabeled data set queried at once. 
This increases the computational costs but also the chance of finding the most 
informative examples. This article will only consider Pool-based AL (henceforth, 
AL). The limitations section discusses differences from Stream-based AL.

7 Sometimes these approaches are called Passive Learning.
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Figure 1: Active Learning setup

Note. Each round, a model is trained on the training set and then used to query 
the Pool. According to a query strategy, n examples are sampled, labeled, and 
added to the training set. This repeats until meeting a certain stopping criteri-
on, for example, a predefined data set size. To evaluate the model each round, 
it is tested on a test set.

The most common query strategy is uncertainty sampling, which employs dif-
ferent techniques to sample examples that the model is most uncertain about. 
For classification tasks, uncertainty is often measured as small differences 
within the distribution of predicted probabilities. This article’s focus is uncer-
tainty sampling. The next section introduces two uncertainty sampling meth-
ods are introduced. For the mathematical details, see Appendix A. 
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One disadvantage of uncertainty sampling is that it likely leads to a sam-
pling bias. Focusing on uncertainty means that examples close to the deci-
sion boundary are selected rather than examples that are representative of 
the underlying distribution (Dasgupta, 2011). Diversity sampling avoids this 
problem. One possible approach is to compute clusters in the feature space to 
acquire a diverse sample (Bodó et al., 2011). However, pure diversity sam-
pling risks sampling examples with low uncertainty, that is, examples that are 
easy to classify. Hybrid versions try to combine diversity and uncertainty strat-
egies by sampling the most uncertain examples but with a special regard for 
keeping the sample representative of the underlying distribution (Yuan et al., 
2020, Margatina et al., 2021).

2.5 Research Questions

AL’s effectiveness has been demonstrated multiple times. Several studies find 
that AL leverages only a small percentage of the original data set and achieves 
almost the same performance. Schröder et al. (2022) test several query strat-
egies on multiple data sets using transformer models. For accuracy of only 
1 – 3 % below the original scores, they require 0.4 %, 0.5 %, 5.8 %, 9.6 %, 
and 15.5 % of the original data set size for five different data sets. Yuan et al. 
(2020) produce similar results, achieving almost the original performance 
with only about 1,000 out of 180,000, 110,000, 60,000, or 17,500 examples. 
The same is shown by Margatina et al. (2021). This demonstrates the massive 
potential of AL for efficient machine learning.8 However, it is not clear wheth-
er AL is also superior to TL in terms of efficiency. This leads to the first of this 
study’s two overarching questions: 

RQ1: How efficient is AL in contrast to TL?

Efficiency is understood as a tradeoff between model performance and compu-
tational costs (and, thereby, emissions) in training the model. Ideally, AL leads 
to an increase in performance while reducing the computational workload for 
training the model. Comparing the efficiency of AL to TL requires two base-
lines: the performance on the full data set (full baseline) and the performance 
on a random sample for each query round (random baseline). The evaluation 
against the full baseline addresses how AL improves or diminishes the perfor-
mance and emissions in contrast to training on a large data set. A full base-
line is only available under laboratory conditions because it requires a large, 
labeled data set. In many real-world scenarios, where the size of the data set 
is limited by time and financial constraints, AL is applied because there are no 
resources for building a large, annotated data set. The evaluation against the 
random baseline is more relevant to these scenarios, answering the question of 

8 See Attenberg and Provost (2011) and Lowell et al. (2019) for discussions of the problems and practical obstacles of AL.
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whether the increase or decrease in performance is due to the AL query strat-
egy or whether the model just requires less data. In other words, in scenarios 
where the size of the data set is fixed, it answers the question of whether AL 
leads to a better data set of this size or whether a random sample is just as 
good or even better.

However, even if AL turns out to improve the model performance, it might 
still be the case that AL is inferior to TL in terms of computational costs and 
carbon emissions. For AL, the Pool is queried and the model is trained multi-
ple times. Depending on the Pool and step size, this is likely to require more 
time than simply training the model once on the entire Pool. Furthermore, if 
the hardware and electricity mix remain the same, longer training time directly 
translates to higher CO2 emissions. Therefore, in scenarios where AL has a 
higher carbon footprint than TL, we arrive at our second research question: 

RQ2: How can the efficiency of AL be increased?

The AL process features two parameters that can be tweaked to make it more 
efficient: Pool size and step size. Querying a larger Pool requires more time 
than querying a smaller Pool. Therefore, decreasing the Pool size decreases 
emissions. For large Pool sizes, that is, scenarios in which most emissions 
result from querying the Pool and only a small portion is dedicated to training 
the model, we can assume that the percentage by which the Pool is shrunk 
roughly equals the percentage of emissions saved. For smaller Pool sizes, the 
effect is smaller. However, one risk of reducing the Pool size is the problem of 
limited choices. A larger Pool increases the chance of finding the most infor-
mative examples, with a smaller Pool limiting the choices for each query and, 
thereby, the chances of finding the most informative examples. 

The second option is to increase the step size, which means increasing the 
number of examples queried each round. Querying more examples each round 
requires fewer rounds and, thereby, less time to obtain the desired data set 
size. However, this also encompasses a risk: Assuming that similar examples 
produce similar prediction probabilities, it is highly probable that a single 
query is highly homogenous. Increasing the step size invites the danger of 
increasing the homogeneity of the final data set. The next section presents the 
results of AL on multiple data sets but also with varying Pool size or step size.
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Scope of AL

AL’s potential to reduce training emissions depends on its number of applica-
tion areas and whether its computational costs are amortized in the long run. 
That is, it depends on the share of supervised learning in machine learning 
overall and on the frequent reuse of data sets. To the best of my knowledge, 
for neither factor are there representative numbers that are valid for research, 
economy, and civil society projects alike. However, certain data sources at 
least provide limited insight into these factors.

Although AL is mostly used in supervised learning and not in unsupervised 
or self-supervised settings, exceptions exist. For example, AL has been ap-
plied to Few-Shot Learning (Diao et al., 2023), but the small size of the data 
sets in this setting means that AL is unlikely to significantly decrease training 
emissions. Estimating the share of supervised learning in machine learning 
overall is no trivial task. One option is to consider the task types that are most 
common at Hugging Face, a popular platform for data sets. In fact, supervised 
learning – in the shape of, for example, text, token, or image classification – 
plays a major role (Appendix D). Nonetheless, Hugging Face is not represen-
tative of the entire machine learning community, and the numbers could differ 
between research and business applications. However, given that supervised 
learning likely remains the most efficient way to tackle highly specific and 
custom problems with machine learning (Luccioni and Rogers, 2023), it can 
be assumed that AL enjoys a wide range of application areas.

The second factor that determines the scope of the present results is how 
frequently data sets are reused. Even if AL turns out to be less efficient for 
a single training run, the computational costs might amortize if the smaller 
data set is used repeatedly in subsequent training runs. Regarding the share of 
supervised learning, it is difficult to make general statements about how often 
data sets are reused. I accessed the download numbers of two of the most 
common platforms for data sets: Kaggle9 and Hugging Face.10 Kaggle hosts 
over 200,000 data sets and Hugging Face over 25,000. On Kaggle, a data set 
is downloaded 6,200 times on average (median = 1,057); on Hugging Face, 
the average is 13,356 times (median = 1,211). This means that if we reduce the 
data set size by a large share, this efficiency increase often pays off thousands 
of times. However, data sets on both platforms are mostly used for educational 
purposes, which means that these findings do not represent the general reuse 
of data sets. However, especially for time-dependent settings in which a model 
needs regular re-training on a continuously updated data set, it is likely that 
the reuse factor is high and AL could prove beneficial for efficiency.

9 https://www.kaggle.com/
10 https://huggingface.co/datasets

https://www.kaggle.com/
https://huggingface.co/datasets
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3 Method

All experiments are performed on our own server with a single Tesla V100S-
PCIE-32GB and 32 AMD EPYC 7302P 16-Core Processors. Electricity usage 
is documented using the CodeCarbon library11 from Lottick et al. (2019). 
Instead of using their estimated emission rate for Germany, 485 gCO2/kWh is 
used, a number documented for 2021 in a publication by the German Federal 
Environment Agency (Icha et al., 2022). 

For the experiments, the scope is limited to text classification using a 
pre-trained transformer. To avoid using only English language data sets, 
some German language data sets are added and a multilingual transformer 
(XLM-Roberta base)12 is used. The model is trained for three epochs using the 
default hyperparameters. The data sets are chosen to represent a broad variety 
of size and class numbers. For an overview, see Table 1.

Table 1: Data sets used for the AL experiments

Data set Size (rows) Labels Language Source

Claim Detection 4,188 2 DEU Risch et al. (2021)

Cola 9,569 2 ENG Warstadt et al. (2019)

News Topic 10,273 9 DEU 13

Liar 12,836 6 ENG Wang (2017)

Medical Abstracts 14,438 5 DEU Schopf et al. (2022)

GoEmotions 15,237 10 ENG Demszky et al. (2020)

Claimbuster 23,533 3 ENG Arslan et al. (2020)

imdb 50,000 2 ENG Maas et al. (2011)

Patient Reviews 52,751 6 DEU 14

Yahoo 110,000 10 ENG
Zhang and LeCun 
(2016)

AG News 127,600 4 ENG
Zhang and LeCun 
(2016)

Twitter Sentiment 211,983 2 ENG Naji (2012)

11 https://codecarbon.io/
12 https://huggingface.co/xlm-roberta-base
13 https://tblock.github.io/10kGNAD/
14 https://www.kaggle.com/datasets/thedevastator/german-2021-patient-reviews-and-ratings-of-docto

https://codecarbon.io/
https://huggingface.co/xlm-roberta-base
https://tblock.github.io/10kGNAD/
https://www.kaggle.com/datasets/thedevastator/german-2021-patient-reviews-and-ratings-of-docto


POTENTIALS AND LIMITATIONS OF ACTIVE LEARNING \ 1204

Some of the data sets – for example, AG News or Yahoo (Yuan et al., 2020; 
Schröder et al., 2022) – have been used for other studies on AL. For some data 
sets, such as Claimbuster, there is no previous work on AL. The data set sizes 
range from about 4,200 to more than 200,000 sentences. The number of labels 
varies between two and ten. Claimbuster, Liar, and Claim Detection are used 
for the assistance of fact-checkers and to address disinformation. News Topic, 
AG News, Medical Abstracts, and Yahoo are data sets for the topic classifica-
tion of newspaper articles, abstracts, and Yahoo posts. Twitter Sentiment, Go 
Emotion, imdb, and Patient Reviews correspond to sentiment or emotion clas-
sification. Cola is a data set capturing grammatical acceptability of sentences.

To perform AL, two query strategies are chosen: Breaking Ties and Prediction 
Entropy. The Breaking Ties strategy considers the difference in prediction 
probabilities between the first and second most likely class. A low difference 
indicates that the model features a high level of uncertainty. However, Break-
ing Ties only considers the two most likely classes. This can be a disadvantage 
in multiclass settings. Meanwhile, Prediction Entropy is high when the predic-
tion distribution is close to uniform, which again indicates a high level of un-
certainty. In sum, for Breaking Ties, I sample the n examples with the lowest 
difference between the two most likely classes, and for Prediction Entropy, I 
sample the n examples with the highest entropy. n refers to the step size. For 
more details regarding the two query strategies, see Appendix A. 

Each data set is split into a Pool set (70 %) and a test set (30 %). The ini-
tial training set size is always 1% of the Pool size. The Pool is queried until 
reaching a desired data set size. For most data sets, this is 10 % of the Pool 
size. Due to time constraints, for larger data sets, the process is stopped at 7 %, 
5 %, or 3 %. To illustrate: AL for Twitter Sentiment took 41 hours to reach 
3 % of the Pool size. The first round of experiments is conducted with a step 
size of 50 and the full Pool size. Subsequent rounds of experiments are only 
performed on a sub-sample of the data sets. This subsample comprises News 
Topic, Claimbuster, and AG News. These data sets vary by size and number 
of labels, with models coming close to the full baseline and often outperform-
ing the random baseline. Step sizes of 100 and 250 are tested (with Pool size 
100 % and Pool sizes of 70 % and 50 % are tested with step size 50.



POTENTIALS AND LIMITATIONS OF ACTIVE LEARNING \ 1304

Findings

The results of the different experiments appear in Figures 2, 3, and 4 and the 
exact numbers in Appendix B and Appendix C. Figure 2 illustrates the results 
for three of the twelve data sets and relates them to the two baselines. Overall, 
AL leads to a good performance, with the F1 close to the full baseline. How-
ever, AL emits more CO2 than the full baseline. The plot shows the results for 
step size 50 and Pool size 100 %. Each bar represents the best performance 
(top), that is, the emissions that achieve this performance (bottom). As the 
bars demonstrate, AL and the random baseline require only a small fraction of 
the original training set to achieve an F1 close to the full baseline, which uses 
100 % of the training set.

Of the two query strategies, Breaking Ties performs better. For AG News and 
Claimbuster, the results are satisfactory, with AL outperforming the random 
baseline and coming close to the full baseline for both. For News Topic, the 
results are less promising, with Breaking Ties performing 0.08 worse than 
the full baseline and only 0.01 better than the random baseline. This can be 
explained by the fact that News Topic is the smallest of the three data sets but 
features the most classes. For the two larger data sets, Claimbuster and AG 
News, the full baseline emitted less carbon than querying multiple rounds with 
either AL or random sampling. Only in the case of NewsTopic did random 
sampling record a smaller carbon footprint than the full baseline. However, 
in this case, too, AL demanded heavier computation than training once on the 
full training set.

Figure 2: Results for Active Learning on three data sets
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Note. The y axes represent the AL query technique (i.e., the random and full 
baseline). The x axes represent the F1 (top) and the CO2 emissions for training 
and querying (bottom).

Figure 3 represents the results for all data sets. As before, AL comes close to 
the full baseline or even exceeds it. Only for a few data sets is the performance 
significantly worse than the full baseline. However, here, too, emissions for 
AL are higher than for the full baseline, an effect that increases with Pool size. 
The exact numbers of all experiments appear in Appendix B. 

The first plot represents the (best) performance on each data set compared to 
the full baseline. The general performance trend is satisfactory. Assuming that a 
small reduction of about 4 % in performance when compared to the full baseline 
remains good, AL fulfills its purpose for most data sets. The substantial increase 
for Liar and Medical Abstracts is explained by the weak full baseline, with 
models trained on the full Liar training set only reaching an F1 of 0.07. In most 
cases, the Breaking Ties strategy outperforms the Prediction Entropy strategy. 
This is especially surprising for multilabel data sets, such as News Topic and 
Yahoo, because Breaking Ties only considers the two most likely classes.

The second plot illustrates the performance of AL in contrast to the random 
baseline. With only one exception (Patient Reviews) all AL scenarios outper-
form the random baseline. However, this happens only by a few percentage 
points. This indicates that the models often require less data, with the exact 
sampling technique secondary. The most notable experiment is on Claim De-
tection, which achieves a 0.18 F1 increase against the random baseline.

Figure 3: Summary statistics for AL experiments
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Note. For all plots, the x-axis represents the respective data set. For the full 
baseline, the y-axis line plot displays the difference between the best query 
strategy and the full baseline. For the random baseline, the y-axis line plot dis-
plays the difference between the best query strategy and the random baseline. 
For active training or query emissions, the y-axis displays the factor by which 
AL training or query is bigger or smaller than full training. All emissions are 
cumulative sums over each query round.

The two plots at the bottom of Figure 3 represent the cumulative emissions for 
active training and active querying. The data sets are ordered by size, starting 
with the smallest. Up to Claimbuster, active training emits just as much as full 
training or only a fraction of it. For larger data sets, the emissions increase 
by a factor of up to 2. The decrease towards the end is due to the correlation 
between training emissions and training set size. For larger data sets – for ex-
ample, AG News or Twitter Sentiment – a smaller percentage of the Pool size 
is required for the best performance, making emissions lower. The major share 
of AL’s emissions is due to querying the Pool, as illustrated in the last plot of 
Figure 3. Only very small data sets produce only a fraction of the full training 
emissions. For all other data sets, full training emissions are exceeded by a 
factor of up to 4.9. In other words, querying the Pool emits almost five times 
as much as training on the full data set.

Figure 4 displays the results for different parameter settings. As it turns out, 
different step or Pool sizes have a very strong effect on emissions but only a 
small effect on performance. This means that tweaking the Pool or step size 
positively impacts efficiency. The exact numbers of all experiments can be 
found in Appendix C. The red circle represents the original setting of step size 
50 and Pool size 100 %. The plots are partitioned by the full baselines into 
four sectors. The upper left sector captures performances that are higher and 
emissions that are lower than for full training. As expected, this sector is emp-
ty for all experiments, meaning that it is unlikely that AL outperforms TL.
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Figure 4: Active Learning with different parameter settings

Note. Each element represents one set of parameters. 

All elements are located below the full performance baseline. However, some 
are left of the full emissions baseline, while others are on the right. In most 
cases, there is a correlation between performance and emissions, meaning 
reduced emissions generally imply diminished performance. For all data sets, 
reducing step or Pool size has a positive effect on emissions, which comes as 
no surprise. However, while the negative impact of step size on the perfor-
mance is only small, reducing the Pool size often has a high price in terms of 
performance. In some cases, F1 drops as much as 0.23 when reducing Pool size; 
however, for an increased step size, the decrease is 0.11 at most. Furthermore, 
the impact of reducing the Pool size seems correlated with the size of the data 
set. It is stronger for smaller data sets than for bigger ones. The variance in per-
formance for different parameter settings is smaller for bigger data sets. This is 
unsurprising given that a reduction of 70 % (50 %) still results in large absolute 
numbers for large data sets. This makes the risk of limited choices less likely.
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For News Topic, reducing the Pool size to 70 % (50 %) of the original size 
means reducing F1 to 0.63 (0.58). For News Topic, the best parameter choice 
is a step size of 100. This reduces the emissions down to the full baseline but 
reduces the performance only slightly compared to step size 50. For Claim-
buster, a step size of 100 keeps the performance constant but reduces the emis-
sions only slightly. Step size 250 and Pool size 70 % bring emissions below 
the full baseline but reduce performance by only 0.02, an apparently good 
trade-off between performance and emissions. For AG News, step size has no 
influence on performance but reduces emissions substantially. Reducing Pool 
size engenders a slight decrease in performance but a stronger reduction in 
emissions than reducing step size.

4 Discussion, Limitations, and Conclusion

4.1 Discussion

AL’s efficiency strongly depends on the choice of parameters
Several experiments were conducted to test the influence of step and Pool size 
on performance and emissions. Not surprisingly, reducing the Pool size or 
increasing the step size reduces emissions. However, it also diminishes perfor-
mance, which is less desirable. Nonetheless, performance often decreases less 
than emissions, a positive result. An important finding is that, for all three data 
sets, it is possible to push emissions below the full baseline.

Only for some parameter settings is AL more efficient than TL
In response to the first research question (How efficient is AL in contrast to 
TL?), the experiments show that AL comes close to TL in terms of perfor-
mance. For most data sets, the AL score is only slightly lower than the full 
baseline. However, in terms of emissions, AL’s carbon footprint surpasses 
that of TL in most scenarios. The reason for this is mostly the computational 
costs associated with querying the Pool. This suggests that a small initial data 
set precludes AL being more efficient than TL. However, for large initial data 
sets, AL can be more efficient, provided the step size is not too small and the 
Pool size not too large.
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The pool size can be saturated

The second research question concerned ways of making AL more efficient. 
As mentioned, if the initial data set is large and the Pool size is reduced, AL 
can be more efficient than TL. However, reducing the Pool size limits choice 
when selecting the best training examples. The experiments suggest that there 
is a level of saturation for AL. An unlimited increase in Pool size does not 
correlate with ever-increasing performance. At a certain Pool size, the num-
ber of examples is such that AL could not even make a better choice even if 
there were more. In these scenarios, decreasing the Pool size is a good way of 
increasing AL’s efficiency.

Many of the present data sets are heavily oversized
A major surprise is the performance on the random baseline. With only 5.63 % 
of the original data set on average (std = 4.02), the random baseline’s F1 is 
only 0.05 below the full performance, on average (std = 0.05).15 This is only 
0.03 worse compared to AL, which produces an F1 0.08 lower, on average, 
than the full baseline. If we ignore Claim Detection, for which AL works very 
well, the difference between the random baseline and AL decreases to 0.01. 
This means that random sampling works almost as well as AL. 

This enables two conclusions. First, it is necessary to conduct further investi-
gation into the differences between active sampling and random sampling. The 
actively sampled examples might still have features that are beneficial above a 
small increase in F1. Second, it seems that most of the presented data sets are 
heavily oversized. Given that random sampling of 5.63 % of the original data set 
decreased F1 by 0.05, the remaining 94.37 % are responsible for only 0.05 of F1.

4.2 Limitations

The experiments were limited to one task type and a single model 
architecture
Although the scope of AL has already been discussed, the present experiments 
have limitations of their own, most strikingly that they employ only text data 
and classification tasks. AL is not restricted to these formats, but it is likely that 
many of the results presented here also apply to other settings, such as vision 
and regression tasks. However, further exploration remains for future research.

15 Liar and Medical Abstracts are excluded because of their weak full baseline.
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Furthermore, for the experiments, only transformer models were evaluated. 
Text classification, however, has been approached using other architectures. 
The decision for transformer models was based on the observation that emis-
sions by classical machine learning models – such as SVM or Logistic Re-
gression – are already relatively low. Because deep learning has been demon-
strated to increase required computing power (Amodei & Hernandez, 2018), 
performing the experiments on these architectures was a natural choice. 

Although Recursive Neural Networks have been dominant in this area for 
many years, transformer models have more recently become most relevant. 
Additionally, because transformers allow for parallelizing GPUs, the com-
puting power demanded often surpasses that of Recursive Neural Networks. 
Nonetheless, it cannot be determined whether the present results can be gen-
eralized to other architectures. That is, while transformer models represent a 
natural first step, research should not stop there.

Additionally, the experiments have focused on pre-trained transformers, in 
contrast to training from scratch. As mentioned, AL is used for supervised 
training, which does not apply to most pre-training cases. Nonetheless, it is 
relevant to address how fine-tuning emissions relates to pre-training emis-
sions. This depends strongly on the size of the model. Training a single LLM 
– such as LLaMA 2 (Touvron et al., 2023) – can emit as much as 291 tCO2eq.
This is clearly on a different level compared to the experiments in this paper.
Moreover, parameter-efficient fine-tuning (Hu et al., 2021) – such as LoRA –
strongly reduces the required computing power. This means that fine-tuning
emissions are likely much lower than pre-training emissions.

Only one model was used (instead of an ensemble)
Previous research has shown that data sets are influenced by model choice 
and successor models often perform worse on the data set if they differ in 
their architecture from the original model (Lowell et al., 2019). This problem 
can be addressed by using an ensemble of different architectures. This again 
increases the energy costs for AL, with each additional model adding linearly 
to the overall cost.

Only Pool-based AL was studied
In Stream-based AL, for example, the model queries the unlabeled data suc-
cessively rather than all at once (Settles, 2010). This restricts the choices for 
each round but also reduces the computational cost because the large (unla-
beled) data set does not have to be queried as often. Future research might aim 
to compare Pool-based and Stream-based AL with regard to performance and 
efficiency. 
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Only (two) uncertainty-sampling strategies were studied
This article has focused on uncertainty sampling, that is, querying examples 
that are difficult, rather than diversity sampling, that is, querying examples by 
their heterogeneity in the feature space. The two approaches feature relevant 
differences. The problem of homogeneity, which is risked when increasing 
step size, does not apply to diversity sampling in the same way that it applies 
to uncertainty sampling. This means that the options for optimizing AL’s effi-
ciency look different, and further research is required. 

Only two uncertainty sampling strategies, Breaking Ties and Prediction Entro-
py, were addressed. They are the most popular strategies, with other (hybrid) 
strategies – for example, contrastive AL (Margatina et al., 2021) – being far 
more computationally expensive. Therefore, the present study suitably cap-
tures the use of AL for efficiency and sustainability.

Real-world obstacles to Active Learning
As is the case for most studies, the experiments were conducted in an artificial 
setup using already existing data sets, instead of using AL to create new ones 
from scratch. Attenberg and Provost (2011) recognize that while there has 
been extensive research on AL, it has not gained traction in real-world sce-
narios due to certain obstacles that are insufficiently addressed by the relevant 
studies (for different types of practical obstacles, see also Lowell et al., 2019). 
One obvious problem in a real-world setting is that different AL sampling 
strategies cannot be compared because this would require additional annota-
tions, which AL is supposed to prevent in the first place. Another problem oc-
curs when the data distribution is skewed. If one class appears less frequently 
than others, uncertainty sampling might not be the best choice. However, the 
distribution is not known in advance. 

Similar obstacles limit the present study. As has been shown, different parame-
ter settings in AL lead to different outcomes in terms of efficiency. An artificial 
setup can identify the most beneficial settings by testing different combina-
tions, but this does not apply to real-world scenarios. The next section pro-
vides several recommendations. However, applying AL in practice still comes 
with uncertainties that this study does not address.
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Recommendations

This study’s findings reveal that the ecological benefit of AL strongly depends 
on parameter settings and data set size. However, aligning with previous stud-
ies on AL, in most cases, AL can be used to decrease data set sizes. This, in 
turn, can lead to the democratization of machine learning research, with small-
er data sets requiring fewer computational resources, making them accessible 
to a broader audience. Furthermore, as explained, although there are no fully 
representative numbers, it seems natural that a large share of current machine 
learning is supervised and, therefore, AL finds application. Furthermore, as-
suming that data sets are used multiple times, we can expect that AL’s compu-
tational costs are amortized in the long run, even though we cannot ascertain 
to what degree in general.

Despite not being generalizable to all possible scenarios, the present experiments 
allow us to make two recommendations for the use of AL for sustainable AI.

Use AL for larger projects
For smaller data sets, such as NewsTopic, AL produces more emissions than 
training once on the full training set. This suggests that AL has no viable 
application here from an ecological perspective. However, for larger data sets, 
such as AG News, AL combined with a high step size and low Pool size turned 
out to be more efficient than TL. The experiments showed that with only 50 % 
of the roughly 130,000 sentences as a Pool, AL achieved competitive results. 
The minimum required Pool size might vary with the number of class labels, 
but the present experiments can serve as orientation. In scenarios involving 
resources for annotating large data sets, it is recommended to apply AL and 
proceed in rounds, instead of sampling one large data set all at once. However, 
from an ecological perspective, it is key to also keep the Pool size small.

Pair AL with methods for increasing inference efficiency
As Figure 3 shows, most AL emissions come from querying the Pool and not 
training the model multiple times. This means that the most efficient way to 
lower the emissions associated with AL is to optimize inference. As men-
tioned, quantization represents one way to do this, and there have been many 
advances in recent times (e.g., Dettmers & Zettlemoyer, 2023). Pairing AL 
with model compression (only for querying the Pool) would decrease emis-
sions without the need to compress the model permanently.



POTENTIALS AND LIMITATIONS OF ACTIVE LEARNING \ 2204

4.3 Conclusion

This paper has presented experiments testing the use of AL to reduce CO2 
emissions during model training. Although smaller data sets are beneficial 
in this respect, the associated additional computational workload cancels out 
these benefits and even increases emissions compared to training on a large 
data set. I have argued that AL can be successfully applied in some settings, 
as in the case of larger projects, or by pairing it with model compression. This 
sets the agenda for future research. On the one hand, it is necessary to inves-
tigate how different methods for sustainable AI can be most efficiently com-
bined, for example, quantization and AL. On the other hand, more research 
is needed comparing different techniques with the same aim, such as AL and 
data set distillation. Finally, the scope of the present study should be widened 
by performing experiments on more AL strategies, machine learning task 
types, and model architectures.
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Appendix A

One major Active Learning strategy involves sampling examples that the mod-
el is most uncertain about. The underlying assumption is that the model learns 
more from examples it is not certain about than from examples that it is cer-
tain about. Uncertainty of a model θ is expressed in its prediction probability 
for the given classes Pθ (y ̂ |x). One Active Learning strategy is called Breaking 
Ties or Margin Sampling (Settles, 2009):

x* = argminx Pθ (y ̂ 1 |x)–Pθ (y ̂ 2 |x)

Where x* is the most informative example and y ̂ 1 and y ̂ 2 are the first and 
second most likely classes. For example, if the model predicts class A with a 
probability of 0.8 and class B with a probability of 0.15 (the remaining 0.05 is 
spread among the other classes), the margin is 0.65. This is quite high because 
the model is confident in its prediction. If it is uncertain and predicts 0.4 and 
0.3 instead, the margin is only 0.1. In this version, active sampling means 
computing the margin for all examples in the pool and then labeling those 
with the lowest margin.
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However, margin sampling only considers the two most likely classes. By 
contrast, the most popular Active Learning strategy, prediction entropy (or 
entropy sampling), utilizes the probabilities for all classes:

x* = argmaxx –  ∑
i

      Pθ (y ̂ � |x)logPθ (y ̂ � |x)

Entropy sampling concerns finding the sampling examples from the pool that 
have the largest entropy. The larger the entropy, the closer the distribution to 
uniform. A uniform distribution of class probabilities means that the model finds 
all classes equally likely, which expresses a maximum degree of uncertainty.

Appendix B

Table A1: Top performance on different data sets

Data Use (%) Performance (F1) Emissions (gr.)

Data set Query Active Random Full Active Random Full Active Random

Claim Detection BT 9.52 0.99 .73 .71 .53 12.7 10.3 0.1

Cola PE 6.23 1.0 .58 .59 .58 29.6 31.5 0.2

News Topic BT 9.34 9.34 .89 .81 .80 32.7 62.6 20.3

Liar BT 6.01 3.78 .07 .16 .16 39.3 51.9 4.8

Medical Abstracts PE 9.9 9.41 .17 .47 .40 45.5 132.1 39.9

GoEmotions BT 8.97 9.44 .64 .46 .42 46.9 123.5 43.3

Claimbuster BT 7.07 8.59 .84 .82 .80 72.9 210.7 85.9

imdb BT 7.57 6.86 .94 .92 .92 157.6 1082.9 251.7

Patient Reviews BT 6.82 9.53 .54 .46 .47 162.8 1020.8 535.1

Yahoo BT 3.92 1.19 .77 .74 .71 344.0 2057.7 14.8

AG News BT 3.29 8.39 .94 .92 .92 390.8 2089.6 2431.5

Twitter Sentiment PE 2.48 1.0 .85 .81 .79 652.0 3620.7 6.2
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Appendix C

Table A2: Results for different parameter settings 

Data Use (%) Performance (F1) Emissions (gr.)

Data set Query Active Random Full Active Random Full Active Random

50 AG News BT 3.29 4.47 .94 .92 .91 391 2090 664

Claimbuster BT 7.07 8.59 .84 .82 .80 73 211 86

News Topic BT 9.34 9.34 .89 .81 .80 33 63 20

AG News BT 3.69 4.02 .94 .92 .91 391 1262 271

100 Claimbuster BT 9.5 8.89 .84 .82 .80 73 160 47

News Topic BT 9.34 9.34 .89 .79 .75 33 33 11

AG News BT 3.52 4.64 .94 .92 .91 391 500 153

250 Claimbuster BT 7.07 8.59 .84 .80 .73 73 50 20

News Topic PE 7.95 7.95 .89 .70 .74 33 13 4

AG News BT 4.60 5.08 .94 .92 .91 391 660 171

70 Claimbuster BT 7.94 9.24 .84 .80 .77 73 50 20

News Topic BT 9.93 9.93 .89 .63 .70 33 14 5

AG News BT 3.58 3.58 .94 .91 .90 391 238 42

50 Claimbuster BT 9.49 8.89 .84 .75 .73 73 33 10

News Topic PE 9.34 7.95 .89 .58 .53 33 7 2

Note. 50, 100, and 250 denote different step sizes; 70 and 50 denote percentages 
of the Pool.
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Appendix D

Table A3: Task types on Hugging Face

Task Count

text-classification 35,650

reinforcement-learning 24,467

text2text-generation 17,968

text-generation 15,578

token-classification 9,698

automatic-speech-recognition 9,080

fill-mask 7,792

feature-extraction 6,675

question-answering 5,607

text-to-image 5,172

image-classification 4,602

other 11,308

Note. The count indicates how many models on the platform are designed for 
the respective task. Data accessed at the beginning of July 2023.
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