Zum Inhalt springen

Privacy Preserving Distributed Linear Regression on High-Dimensional Data

Author: Gascón, A. , Schoppmann, P., Balle, B. , Raykova, M., Doerner, J., Zahur, S. , and Evans, D.
Published in: Proceedings on Privacy Enhancing Technologies (PETS '17), 2017, 2017(4), 345-364
Year: 2017
Type: Academic articles
DOI: 10.1515/popets-2017-0053

We propose privacy-preserving protocols for computing linear regression models, in the setting where the training dataset is vertically distributed among several parties. Our main contribution is a hybrid multi-party computation protocol that combines Yao’s garbled circuits with tailored protocols for computing inner products. Like many machine learning tasks, building a linear regression model involves solving a system of linear equations. We conduct a comprehensive evaluation and comparison of different techniques for securely performing this task, including a new Conjugate Gradient Descent (CGD) algorithm. This algorithm is suitable for secure computation because it uses an efficient fixed-point representation of real numbers while maintaining accuracy and convergence rates comparable to what can be obtained with a classical solution using floating point numbers. Our technique improves on Nikolaenko et al.’s method for privacy-preserving ridge regression (S&P 2013), and can be used as a building block in other analyses. We implement a complete system and demonstrate that our approach is highly scalable, solving data analysis problems with one million records and one hundred features in less than one hour of total running time.

Visit publication


Connected HIIG researchers

Phillipp Schoppmann

Ehem. Assoziierter Forscher: Daten, Akteure, Infrastrukturen

Aktuelle HIIG-Aktivitäten entdecken

Forschungsthemen im Fokus

Das HIIG beschäftigt sich mit spannenden Themen. Erfahren Sie mehr über unsere interdisziplinäre Pionierarbeit im öffentlichen Diskurs.