Zum Inhalt springen

Digital Society Blog

Unsere vernetzte Welt verstehen

169 HD – AI is neutral – 1

Mythos: KI macht Schluss mit Diskriminierung

10 Mai 2021| doi: 10.5281/zenodo.4745653

Als vermeintlich objektive Spitzentechnologie besteht die Hoffnung, dass KI menschliche Schwächen überwinden kann. Manche Menschen glauben, dass KI frei von menschlichen Voreingenommenheiten und Fehlern sei und auf Grundlage fairer und objektiver Entscheidungen so der Diskriminierung einen Riegel vorschieben könne.

Wir entmystifizieren diese Behauptung, indem wir uns konkrete Beispiele dafür ansehen, wie KI Ungleichheiten (re)produziert, und verbinden diese mit verschiedenen Aspekten, die helfen, sozio-technische Verstrickungen zu veranschaulichen. Unter Rückgriff auf eine Reihe kritischer WissenschaftlerInnen argumentieren wir, dass dieser vereinfachende Mythos sogar gefährlich sein könnte und zeigen, was dagegen zu tun ist.

Mythos

KI wird die Diskriminierung beenden (oder ist zumindest weniger diskriminierend als fehlbare und unfaire Menschen).


Als Teil der Gesellschaft ist KI tief in ihr verwurzelt und als solche nicht von Strukturen der Diskriminierung zu trennen. Aufgrund dieser sozio-technischen Einbettung kann KI Diskriminierung nicht von selbst zum Verschwinden bringen.

Vortrag ansehen

Material

Folien der Präsentation
SCHLÜSSELLITERATUR

Benjamin, R. (2019a): Captivating Technology. Race, Carceral Technoscience, and Liberatory Imagination in Everyday Life. Durham: Duke University Press.

Benjamin, R. (2019b): Race after technology: abolitionist tools for the new Jim code. Cambridge: UKPolity.

Criado-Perez, C. (2020): Unsichtbare Frauen. Wie eine von Daten beherrschte Welt die Hälfte der Bevölkerung ignoriert. München: btb Verlag.

D’Ignazio, C.; Klein, L. F. (2020): Data Feminism.
Strong ideas series Cambridge, Massachusetts London, England: The MIT Press.

Buolamwini, J.; Gebru, T. (2018): Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In: Proceedings of Machine Learning Research 81. Paper präsentiert bei der Conference on Fairness, Accountability, and Transparency, 1–15.

ZUSATZLITERATUR

Eubanks, V. (2017): Automating inequality. How high-tech tools profile, police, and punish the poor. First Edition. New York, NY: St. Martin’s Press

O’Neil, C. (2016): Weapons of math destruction. How big data increases inequality and threatens democracy. First edition. New York: Crown.

Zuboff, S. (2020): The Age of Surveillance Capitalism. The Fight for a Human Future at the new Frontier of Power. First Trade Paperback Edition. New York: PublicAffairs.

Cave, S.; Dihal, K. (2020): The Whiteness of AI. In: Philosophy & Technology 33(4), 685–703.
UNICORN IN THE FIELD

Epicenter.works
AlgorithmWatch
netzforma* e.V.

Über die Autor*innen

Miriam Fahimi, Digital Age Research Center (D!ARC), Alpen-Adria-Universität Klagenfurt

Miriam ist Marie Skłodowska-Curie Fellow im Horizon 2020 ITN-ETN Marie Curie Training Network “NoBIAS – Artificial Intelligence without Bias” und wissenschaftliche Projektmitarbeiterin am Digital Age Research Center (D!ARC) der Alpen-Adria-Universität Klagenfurt. Sie promoviert in Science and Technology Studies an der Alpen-Adria-Universität Klagenfurt bei Katharina Kinder-Kurlanda. Ihre Forschungsinteressen umfassen algorithmische Fairness, Wissenschaftsphilosophie, Wissenschafts- und Technologiestudien und feministische Theorie.

@feminasmus

Phillip Lücking

Phillip ist wissenschaftlicher Mitarbeiter und Doktorand an der Universität Kassel, Gender/Diversity in Informatiksystemen (GeDIS). Er absolvierte sein Studium der Intelligenten Systeme an der Universität Bielefeld (MSc). Sein Forschungsinteresse umfasst maschinelles Lernen und Robotik in Bezug auf ihre gesellschaftlichen Auswirkungen sowie die Frage, wie diese Technologien für das Gemeinwohl genutzt werden können.


Why, AI?

Dieser Beitrag ist Teil unseres Projekts “Why, AI?”. Es ist eine Lernplattform, die euch hilft, mehr über die Mythen und Wahrheiten rund um Automatisierung, Algorithmen, die Gesellschaft und uns selbst herauszufinden. Sie wird kontinuierlich mit neuen Beiträgen befüllt.

Alle Mythen erkunden


Dieser Beitrag spiegelt die Meinung der Autorinnen und Autoren und weder notwendigerweise noch ausschließlich die Meinung des Institutes wider. Für mehr Informationen zu den Inhalten dieser Beiträge und den assoziierten Forschungsprojekten kontaktieren Sie bitte info@hiig.de

HIIG Monthly Digest

Jetzt anmelden und  die neuesten Blogartikel gesammelt per Newsletter erhalten.

Titelbild European Platform Alternatives. Ein Schwimmbad mit zwei Sprungtürmen von oben.

European Platform Alternatives

Im Jahr 2020 begann das Platform Alternatives Projekt mit der Erforschung der europäischen Plattformökonomie, um die strukturellen Auswirkungen der großen amerikanischen Plattformen und die Strategien ihrer europäischen Wettbewerber zu verstehen. Das Team fand hier eine äußerst vielfältige und aktive Landschaft digitaler Plattformen vor, in der häufig andere Motivationen als Wachstum und Marktherrschaft im Zentrum stehen. Zwei Jahre später bieten die hier versammelten Beiträge nun eine Alternative zu den aktuellen öffentlichen und politischen Debatten, die sich oft nur um die Fragen der Regulierung großer Plattformen drehen. Neben vielfältigen organisatorischen Lösungen und Regulierungsfragen geht es vor allem die Frage, wie sie europäische Plattformen zu echten Alternativen im globalen Markt entwickeln können.

Discover all 5 articles

Weitere Artikel

Titelbild Blogbeitrag: Deep Fakes

Deep Fakes: die bisher unheimlichste Variante manipulierter Medieninhalte

Deep Fakes sind nicht die ersten manipulierten Medieninhalte. Was also löst dieses außergewöhnliche Gefühl der Unheimlichkeit aus, das wir mit ihnen verbinden?

Wieso entsteht Bias in unseren Sprachtechnologien?

Warum enthalten Übersetzungsprogramme oft diskriminierende Tendenzen gegenüber Geschlecht oder Herkunft? Hier ist ein einfacher Leitfaden um Bias in der Verarbeitung natürlicher Sprache zu verstehen.

Titelbild für den Blogbeitrag. Zu sehen ist ein Publikum von hinten fotografiert. Sie hören einem Vortrag zu.

Ethik der Digitalisierung: Dialog, Teilhabe & Visionen

Welche Visionen müssen wir umsetzen, damit eine ethikgeleitete Digitaliserung unserer Gesellschaft für alle funktioniert? Wir ziehen eine Bilanz.