Zum Inhalt springen
169 HD – AI is inaccessible.-2
02 Juni 2021| doi: 10.5281/zenodo.4811512

Mythos: Die KI versteht mich, aber ich kann sie nicht verstehen

Jeder kann und sollte verstehen, wie KI funktioniert, so dass wir – anstatt uns von algorithmischer Entscheidungsfindung einschüchtern oder in die Irre führen zu lassen – mehrere Perspektiven in die Entwicklung und Implementierung der Systeme einbringen können, die uns alle unterschiedlich beeinflussen.

Mythos

KI versteht mich, aber ich sie nicht verstehen.

KI ist NICHT schlauer als wir. KI sollte verständlich und zugänglich sein.

Vortrag ansehen

Material

Folien der Präsentation
SCHLÜSSELLITERATUR

Crawford, K. & Paglen, T. (2019, September 19). Excavating AI: The Politics of Images in Machine Learning Training Sets.

Timnit Gebru. (2021, April 14). The Hierarchy of Knowledge in Machine Learning & Related Fields and Its Consequences.

Zubarev, V. (2018, November 21). Machine Learning for Everyone.

ZUSATZLITERATUR

Griffith, C. (2017). Visualizing Algorithms.

Kogan, G. (n.d.). Neural networks. Retrieved 18 May 2021.

McPherson, T., & Parham, M. (2019, October 24). ‘What is a Feminist Lab?’ Symposium.
UNICORN IN THE FIELD

Algorithmic Justice League
Color Coded LA
Data Nutrition Project
School of Machines, Making, & Make-Believe

Über die Autorin

Sarah Ciston, Fellow | HIIG

Sarah Ciston ist Virtual Fellow am Humboldt Institut für Internet und Gesellschaft und Mellon Fellow und Doktorandin in Media Arts + Practice an der University of Southern California. Ihre Forschung untersucht, wie man Intersektionalität in die künstliche Intelligenz einbringen kann, indem man queere, feministische und antirassistische Ethik und Taktiken anwendet. Sie leitet das Creative Code Collective – eine studentische Gemeinschaft für Co-Learning-Programmierung unter Verwendung zugänglicher, interdisziplinärer Strategien. Zu ihren Projekten gehören ein Machine-Learning-Interface, das den inneren Kritiker „umschreibt“, und ein Chatbot, der Online-Frauenfeinden den Feminismus erklärt. Derzeit entwickelt sie eine Bibliothek von digital gedruckten Magazinen zu intersektionaler KI.

@sarahciston


Why, AI?

Dieser Beitrag ist Teil unseres Projekts „Why, AI?“. Es ist eine Lernplattform, die euch hilft, mehr über die Mythen und Wahrheiten rund um Automatisierung, Algorithmen, die Gesellschaft und uns selbst herauszufinden. Sie wird kontinuierlich mit neuen Beiträgen befüllt.

Alle Mythen erkunden


Dieser Beitrag spiegelt die Meinung der Autor*innen und weder notwendigerweise noch ausschließlich die Meinung des Institutes wider. Für mehr Informationen zu den Inhalten dieser Beiträge und den assoziierten Forschungsprojekten kontaktieren Sie bitte info@hiig.de

Auf dem Laufenden bleiben

HIIG-Newsletter-Header

Jetzt anmelden und die neuesten Blogartikel einmal im Monat per Newsletter erhalten.

Forschungsthema im Fokus Entdecken

Du siehst Eisenbahnschienen. Die vielen verschiedenen Abzweigungen symbolisieren die Entscheidungsmöglichkeiten von Künstlicher Intelligenz in der Gesellschaft. Manche gehen nach oben, unten, rechts. Manche enden auch in Sackgassen. Englisch: You see railway tracks. The many different branches symbolise the decision-making possibilities of artificial intelligence and society. Some go up, down, to the right. Some also end in dead ends.

Künstliche Intelligenz und Gesellschaft

Die Zukunft der künstliche Intelligenz funktioniert in verschiedenen sozialen Kontexten. Was können wir aus ihren politischen, sozialen und kulturellen Facetten lernen?

Weitere Artikel

Stuhlreihen in einer Hochschule, die symbolisieren, dass eine sinnvolle Wirkung im Technologiedesign damit beginnt, echte Menschen und ihren Kontext zu verstehen.

Gründen mit Wirkung: Für digitale Unternehmer*innen, die Gesellschaft positiv gestalten wollen

Impact Entrepreneurship braucht mehr als Technologie. Wie entwickeln wir digitale Lösungen mit Wirkung?

A shelf with books and a deconstructed face sculpture, symbolising how AI and bias influence knowledge and learning in higher education.

Bias erkennen, Verantwortung übernehmen: Kritische Perspektiven auf KI und Datenqualität in der Hochschulbildung

KI verändert Hochschule. Der Artikel erklärt, wie Bias entsteht und warum es eine kritische Haltung braucht.

Das Foto zeigt eine Gruppe kämpfender Pelikane. Das zeigt symbolisch die Verbreitung von Desinformation durch Politiker*innen und Parteien.

Wer verbreitet wo, wozu und wie viel Desinformation?

Wie viel Desinformation verbreiten Politiker*innen und Parteien tatsächlich? Auf welchen Plattformen und wozu? Zwei Studien geben systematische Antworten.