Unsere vernetzte Welt verstehen
Mittelstand und KI-Start-ups: Nicht die Übersicht verlieren!
Das HIIG begleitete seit 2016 als Konsortialpartner das Mittelstand-4.0-Kompetenzzentrum Berlin im Projekt _Gemeinsam digital. Wir berichten von den KI-Unternehmensdelegationen: Welche KI-Systeme sind von praktischer Relevanz für den deutschen Mittelstand? Wie können KMU und Startups voneinander lernen?
Wer sich Orientierung über die KI-Szene in Deutschland verschaffen möchte, findet heute zahlreiche Anlaufstellen: Webseiten, wie die Plattform lernende Systeme oder die KI-Landkarte von AppliedAI, ermöglichen einen ersten übersichtlichen Zugang zur nationalen KI-Angebotsstruktur. Ein Blick auf diese Übersichtsdarstellungen zeigt, dass bereits eine große Zahl diverser KI-Angebote durch Technologiedienstleister und Startups bereitgestellt werden – und das Angebot wächst kontinuierlich weiter. Dennoch fällt es vielen kleinen und mittleren Unternehmen (KMU) oftmals schwer, die richtigen Produkte für ihren je konkreten Anwendungsfall zu identifizieren. Um Mitarbeitenden in KMU einen praktischen Einstieg in das Themenfeld „KI im Unternehmen“ zu ermöglichen, führten wir im Projektzeitraum zwei KI-Start-up-Touren durch, die an die vorangegangenen Formate der Unternehmensdelegationen sowie Fablab-Touren anknüpften. Teilnehmende erhielten dabei einen wertvollen Einblick in KI-Technologien sowie deren Einsatz im Unternehmensalltag – präsentiert und erklärt von den jeweiligen Entwickler:innen bzw. Start-up-Gründer:innen. Folgende praktische Lösungen wurden während der Start-up-Touren vorgestellt:
Der Einsatz von KI in der Praxis
Im Fokus der ersten Tour stand die KI-gestützte Optimierung von Prozessen oder Dienstleistungen, zu denen drei eingeladene Start-ups ihre Lösungen präsentierten. Vorgestellt wurde eine Anwendung von KI im Kundenservice, konkret die automatische Verarbeitung von Text- und Sprachnachrichten sowie deren zuverlässige Echtzeitanalyse, die zu einer verbesserten Bearbeitung von Kundenanfragen führt. Gezeigt wurde auch eine Integrationsmöglichkeiten von KI im Recruiting, Hauptaugenmerk lag hier auf der Automatisierung des Einstellungsprozesses mittels datengetriebener Methoden, welche sich einfach in bestehende Abläufe integrieren lassen. Ebenfalls lernten die Teilnehmenden eine KI-Lösung für Kommunikationsanalyse und Coaching in Echtzeit kennen, das Verkauf- und Kundendienstmitarbeitende dabei unterstützt, ihre Fähigkeiten und Leistungen zu verbessern.
Kann ein Roboter vom Menschen lernen?
Der Frage, ob ein Roboter vom Menschen lernen kann, wurde in der zweiten Start-up-Tour „Robotik und Automation in der Praxis“ nachgegangen. Die Antwort ist: ja, es ist möglich, dass Produktionsroboter von menschlicher Hand geführt und damit Bewegungsabläufe KI-gestützt trainiert bzw. einstudiert werden, wie ein Berliner Start-up den Teilnehmenden eindrucksvoll zeigte. Ein weiteres intelligentes Automationssystem wurde durch ein weiteres Start-up präsentiert, welches u.a. im Bereich autonomes Fahren tätig ist und eine KI-gestützte sowie extrem skalierbare Bilddatenverarbeitungs-Software anbietet. Besonders hervorzuheben ist ein Start-up, welches im Bereich vorausschauende (Maschinen-)Wartung tätig ist: Da ihnen zu Beginn ihrer Tätigkeit wichtige Daten für die Weiterentwicklung ihres Produktes fehlten, kam es zu einer Kooperation mit einem mittelständischen Unternehmen. Das Start-up erhielt Zugang zu den Maschinen, an denen sie ihre eigenen Sensoren anbringen und so die für KI-Systeme wichtigen Trainingsdaten erheben konnten – im Gegenzug bekam das produzierende Unternehmen ein für ihren Anwendungsfall optimiertes Produkt, das gemeinsam entwickelt wurde.
Anforderungen und Herausforderungen beim Einsatz von KI
Eine erfolgreiche Implementierung von KI-Systemen im Unternehmen ist unter anderem dadurch gekennzeichnet, dass der Kontext, in dem das System zum Einsatz kommt, klar definiert werden muss. Die Anwendung wird vor einem Einsatz meist durch unternehmenseigene Daten trainiert und dadurch optimiert. Deswegen war es wenig überraschend, dass die Teilnehmenden häufig Nachfragen bezüglich der (Daten-)Anforderungen im Unternehmen stellten. Ebenso wurde häufig nachgefragt, in welchem preislichen Rahmen sich einzelne Produkte bewegen – KMU verfügen meist über ein kleines (Digitalisierungs-)Budget, was eine passende Auswahl bei der Fülle der Angebote erschweren kann. Ein bruchstückhaftes Wissen über KI-Technologien erschwert für viele KMU die Suche nach der passenden KI-Lösung zusätzlich. Niedrigschwellige Angebote wie KI-Weiterbildungskurse oder einführende Workshops können hier Abhilfe verschaffen.
Kooperationen langfristig fördern – und von ihnen lernen
Das oben genannte Beispiel zeigt, dass Kooperationen sowohl für Start-ups, deren Produkt noch nicht vollständige Marktreife erreicht hat, ebenso nützlich sein können wie für KMU, die ein für ihren spezifischen Anwendungsfall optimiertes Produkt benötigen, aber nicht das nötige Budget aufbringen können, eine KI-Lösung („AI as a Solution“) individuell entwickeln zu lassen. Durch Kooperationen kann ein Wissensaustausch angeregt werden, der über das bloße Erklären in kleinen Formaten hinausgeht – und gerade auch für die Wissenschaft wichtige Erkenntnisse im Hinblick auf die Anforderungen und Hemmnisse einer langfristigen Zusammenarbeit zweier oft so antagonistisch behandelter Akteure – junge, agile Start-ups und traditionelle, etablierte KMU – zu Tage fördern kann. Es ist deshalb wünschenswert, dass solche Kooperationen über einen längeren Zeitraum gefördert werden und KMU somit die Möglichkeit erhalten, angewandtes Wissen über neue KI-Technologien direkt in ihren Unternehmen zu platzieren, damit sie mit der Digitalisierung Schritt halten und ihre Geschäftsmodelle nachhaltig transformieren können.
Multiplikatoren finden und nutzen
Ein Startup ist der Definition von Steve Blank zufolge eine temporäre Unternehmung auf der Suche nach einem skalierbaren Geschäftsmodell. Daraus geht der vergängliche Charakter hervor, der junge, insbesondere Risikokapital-finanzierte Technologieunternehmen prägt. Ob nun eines aus fünf oder eines aus zehn Unternehmen die Suche nach dem skalierbaren Geschäftsmodell erfolgreich abschließt, darüber gehen die Meinungen auseinander. Allerdings steht fest: den Überblick über die dynamische Landschaft neu entstehender und wieder verschwindender Start-ups zu behalten, ist für einzelne KMU eine Herkulesaufgabe, selbst dann, wenn sie ihren Suchradius auf ein sehr spezielles Anwendungsgebiet begrenzen.
Auch Forschungsinstitute und andere Akteure mit einem Interesse an aktuellen Technologietrends, die durch neu entstehende Unternehmen signalisiert werden, sind mit der Herausforderung konfrontiert, den Überblick zu behalten. Eine bewährte Methode ist es, ein kleines Netzwerk spezialisierter Multiplikatoren aufzubauen und zu pflegen, die eine enge Beziehung zur Welt der Start-ups und Neugründungen als Teil ihres Wertversprechens verstehen und ein Interesse daran haben, diese Welt Dritten zugänglich zu machen. Am HIIG haben wir über die vergangenen 24 Monate ein Multiplikatorennetzwerk aufgebaut, das in Summe auf mehr als 300 nationale und internationale KI-Start-ups zugreift und aktuellste Entwicklungen im Blick behält. Dabei arbeiten wir mit den folgenden Unternehmen als Multiplikatoren zusammen und empfehlen KMU, dieses Vorgehen für sich zu übernehmen: Applied AI, The Impact Farm, HIKE Startup Center, Entrepreneurship Center der TU Braunschweig, XU Group, Entrepreneurship Center des HPI, Merantix, Atomleap GmbH.
Dieser Beitrag spiegelt die Meinung der Autorinnen und Autoren und weder notwendigerweise noch ausschließlich die Meinung des Institutes wider. Für mehr Informationen zu den Inhalten dieser Beiträge und den assoziierten Forschungsprojekten kontaktieren Sie bitte info@hiig.de
Jetzt anmelden und die neuesten Blogartikel einmal im Monat per Newsletter erhalten.
Digitale Zukunft der Arbeitswelt
Widerstände gegen Veränderung: Herausforderungen und Chancen in der digitalen Hochschullehre
Widerstände gegen Veränderung an Hochschulen sind unvermeidlich. Doch richtig verstanden, können sie helfen, den digitalen Wandel konstruktiv zu gestalten.
Von der Theorie zur Praxis und zurück: Eine Reise durch Public Interest AI
In diesem Blogbeitrag reflektieren wir unsere anfänglichen Überlegungen zur Public Interest AI anhand der Erfahrungen bei der Entwicklung von Simba.
Verkehrswende im Kiez: Simulation einer Bürger*innen-Beteiligung in Berlins digitaler Verwaltung
Wie können Daten die Stadtentwicklung vorantreiben? Im Reallabor haben wir die Bürger*innenbeteiligung in Berlins digitaler Verwaltung getestet.