Skip to content

Filling the Gap: Fault-Tolerant Updates of On-Satellite Neural Networks Using Vector Quantization

Author: Kondrateva, O., Dietzel, S., Schambach, M., Otterbach, J., & Scheuermann, B.
Published in: Networking '23: 22nd IFIP Networking Conference, 1-9
Year: 2023
Type: Academic articles
DOI: 10.23919/IFIPNetworking57963.2023.10186407

The use of small, low-Earth-orbit satellites enables many novel Earth observation use cases due to their cost efficiency. To cope with the challenging communication environment, machine learning algorithms, such as artificial neural networks, canbe applied onboard the satellites. They help to prioritize or preprocess sensor measurements and to reduce the amount of data transmitted to Earth. However, transferring and updating machine learning models to suit changing prioritization requirements poses a number of challenges in itself due to short contact times of satellites with ground stations and lossy communication links. We propose a new transmission mechanism for model updates that retains high performance even when these updates have been only partially transmitted. We achieve this by approximating missing model weights using a vector quantization approach. Using a support structure of quantized vector indices, we can approximate the model with a small amount of data, which is transmitted first, while retaining a high performance. The model performance can then be incrementally improved, as more exact model weights are transmitted to the satellites. Our evaluation shows that this approach significantly outperforms existing baselines.

Visit publication


Connected HIIG researchers

Björn Scheuermann, Prof. Dr.

Associated Research Director

  • Open Access

Explore current HIIG Activities

Research issues in focus

HIIG is currently working on exciting topics. Learn more about our interdisciplinary pioneering work in public discourse.