Skip to content

DIGITAL SOCIETY BLOG

Making sense of our connected world

DIGITAL SOCIETY BLOG

Making sense of our connected world

169 HD – AI is inaccessible.-2

Myth: AI understands me, but I can’t understand it

02 June 2021| doi: 10.5281/zenodo.4811512

Everyone can and should understand how AI works, so that—rather than be intimidated or misled by algorithmic decision-making—we can contribute multiple perspectives to designing and implementing the systems that impact us all differently.

Myth

AI understands me, but I can’t understand it.

AI ist NOT smarter than us. AI should be understandable and accessible.

Watch the talk

Material

Folien der Präsentation
SCHLÜSSELLITERATUR

Crawford, K. & Paglen, T. (2019, September 19). Excavating AI: The Politics of Images in Machine Learning Training Sets.

Timnit Gebru. (2021, April 14). The Hierarchy of Knowledge in Machine Learning & Related Fields and Its Consequences.

Zubarev, V. (2018, November 21). Machine Learning for Everyone.

ZUSATZLITERATUR

Griffith, C. (2017). Visualizing Algorithms.

Kogan, G. (n.d.). Neural networks. Retrieved 18 May 2021.

McPherson, T., & Parham, M. (2019, October 24). ‘What is a Feminist Lab?’ Symposium.
UNICORN IN THE FIELD

Algorithmic Justice League
Color Coded LA
Data Nutrition Project
School of Machines, Making, & Make-Believe

About the author

Sarah Ciston, Fellow | HIIG

Sarah Ciston (she/they) is a Virtual Fellow at the Humboldt Institute for Internet and Society, and a Mellon Fellow and PhD Candidate in Media Arts + Practice at University of Southern California. Their research investigates how to bring intersectionality to artificial intelligence by employing queer, feminist, and anti-racist ethics and tactics. They lead Creative Code Collective—a student community for co-learning programming using approachable, interdisciplinary strategies. Their projects include a machine-learning interface that ‘rewrites’ the inner critic and a chatbot that explains feminism to online misogynists. They are currently developing a library of digital-print zines on Intersectional AI.

@sarahciston


Why, AI?

This post is part of our project “Why, AI?”. It is a learning space which helps you to find out more about the myths and truths surrounding automation, algorithms, society and ourselves. It is continuously being filled with new contributions.

Explore all myths


This post represents the view of the author and does not necessarily represent the view of the institute itself. For more information about the topics of these articles and associated research projects, please contact info@hiig.de.

Further articles

Myth: AI is disrupting knowledge work

Recently, applications based on machine learning have made enormous progress and can now take over tasks such as translations, document search or image recognition.

SMEs and AI-Startups: How to keep track

HIIG has been supporting the Mittelstand 4.0 Competence Centre Berlin in the _Gemeinsam digital project as a consortium partner since 2016. We report from the AI company delegations: Which AI…

When your next sex date is only zero feet away. Geolocal technology and gay male online dating with the app Grindr in Berlin (Part 1)

How does the search for non-committal sex inscribe itself into daily routines that homosexual men use to shape their lives in Berlin? For the Digital Society Blog, the author presents...