Skip to content
169 HD – AI is inaccessible.-2

Myth: AI understands me, but I can’t understand it

02 June 2021| doi: 10.5281/zenodo.4811512

Everyone can and should understand how AI works, so that – rather than be intimidated or misled by algorithmic decision-making – we can contribute multiple perspectives to designing and implementing the systems that impact us all differently.

Myth

AI understands me, but I can’t understand it.

AI ist NOT smarter than us. AI should be understandable and accessible.

Watch the talk

Material

Folien der Präsentation
SCHLÜSSELLITERATUR

Crawford, K. & Paglen, T. (2019, September 19). Excavating AI: The Politics of Images in Machine Learning Training Sets.

Timnit Gebru. (2021, April 14). The Hierarchy of Knowledge in Machine Learning & Related Fields and Its Consequences.

Zubarev, V. (2018, November 21). Machine Learning for Everyone.

ZUSATZLITERATUR

Griffith, C. (2017). Visualizing Algorithms.

Kogan, G. (n.d.). Neural networks. Retrieved 18 May 2021.

McPherson, T., & Parham, M. (2019, October 24). ‘What is a Feminist Lab?’ Symposium.
UNICORN IN THE FIELD

Algorithmic Justice League
Color Coded LA
Data Nutrition Project
School of Machines, Making, & Make-Believe

About the author

Sarah Ciston, Fellow | HIIG

Sarah Ciston (she/they) is a Virtual Fellow at the Humboldt Institute for Internet and Society, and a Mellon Fellow and PhD Candidate in Media Arts + Practice at University of Southern California. Their research investigates how to bring intersectionality to artificial intelligence by employing queer, feminist, and anti-racist ethics and tactics. They lead Creative Code Collective—a student community for co-learning programming using approachable, interdisciplinary strategies. Their projects include a machine-learning interface that ‘rewrites’ the inner critic and a chatbot that explains feminism to online misogynists. They are currently developing a library of digital-print zines on Intersectional AI.

@sarahciston


Why, AI?

This post is part of our project “Why, AI?”. It is a learning space which helps you to find out more about the myths and truths surrounding automation, algorithms, society and ourselves. It is continuously being filled with new contributions.

Explore all myths


This post represents the view of the author and does not necessarily represent the view of the institute itself. For more information about the topics of these articles and associated research projects, please contact info@hiig.de.

Sign up for HIIG's Monthly Digest

and receive our latest blog articles.

Man sieht in Leuchtschrift das Wort "Ethical"

Digital Ethics

Whether civil society, politics or science – everyone seems to agree that the New Twenties will be characterised by digitalisation. But what about the tension of digital ethics? How do we create a digital transformation involving society as a whole, including people who either do not have the financial means or the necessary know-how to benefit from digitalisation?  And what do these comprehensive changes in our actions mean for democracy? In this dossier we want to address these questions and offer food for thought on how we can use digitalisation for the common good.

Discover all 11 articles

Further articles

Image shows a visualized human brain with blue light effects

AI as a flying blue brain? How metaphors influence our visions about AI

Why is Artificial Intelligence so commonly depicted as a machine with a human brain? This article shows why one misleading metaphor became so prevalent.

Person in wheelchair taking photos outside

Exploiting potentials: Teaching AI Systems to See Accessibility Barriers

Barriers in our physical environment are still widespread. While AI systems could eventually support detecting them, it first needs open training data. Here we provide a dataset for detecting steps...

You can see a group of people from above doing lessons online. It symoblises digital teaching/digitale Lehre.

Sharing knowledge: Impact of Covid-19 on digital teaching

How can we address the many inequalities in access to digital resources and lack of digital skills that were revealed by the COVID-19 pandemic?