Skip to content

Digital Society Blog

Making sense of our connected world

Accurately Predictions

Myth: AI can accurately predict and optimize human behavior

09 August 2021

With technological advances in the field of AI and a growing amount of behavioral data that employees produce in their day-to-day routine, so-called people analytics tools have become a topic of public debate. These tools capture and analyze the behavioral data of employees, combine it with business data and offer employees and their manager’s insights into work routines, performance and potential. Based on this, people analytics promises to objectify and optimize employee-related decisions. Managers, therefore, place high expectations on these tools, especially with a growing number of employees who work from home and move outside their spatial control.

Myth

AI can accurately predict and optimize human behavior.

AI can indeed predict probabilities of human actions based on historical data. However, the accuracy of these predictions depends heavily on the data quality and is by no means error-free. As the behavior of humans in the workplace is complex and cannot always be quantified and measured, the current generation of AI can support people management in a limited area only and will certainly not make human managers obsolete.

Watch the talk

Material

Presentation Slides
KEY LITERATURE

Giermindl, L. M., Strich, F., Christ, O., Leicht-Deobald, U. & Redzepi, A. (2021). The Dark Sides of People Analytics: Reviewing the Perils for Organisations and Employees. European Journal of Information Systems, ahead of print, 1-26.

Tursunbayeva, A., Di Lauro, S. & Pagliari, C. (2018). People analytics—A Scoping Review of Conceptual Boundaries and Value Propositions. International Journal of Information Management, 43, 224–247.

ADDITIONAL READINGS

AlgorithmWatch. (2020). Positionen zum Einsatz von KI im Personalmanagement. Rechte und Autonomie von Beschäftigten stärken – Warum Gesetzgeber, Unternehmen und Betriebsräte handeln müssen.

BMAS. (2021). Gesetz zur Förderung der Betriebsratswahlen und der Betriebsratsarbeit in einer digitalen Arbeitswelt (Betriebsrätemodernisierungsgesetz).
European Commission.

 
Gal, U., Jensen, T. B. & Stein, M.-K. (2020). Breaking the vicious cycle of algorithmic management: A virtue ethics approach to people analytics. Information and Organization, 30(2), 1-15.

Hammermann, A. & Thiele, C. (2019). People Analytics: Evidenzbasiert Entscheidungsfindung im Personalmanagement, IW-Report, No. 35/2019. Köln: Institut der deutschen Wirtschaft (IW). 

Leonardi, P. M. (2021). COVID‐19 and the New Technologies of Organizing: Digital Exhaust, Digital Footprints, and Artificial Intelligence in the Wake of Remote Work. Journal of Management Studies, 58(1), 249-253.

Netflix. (2020). Vorprogrammierte Diskriminierung [Video].

Nielsen, C. & McCullough, N. (2018). How People Analytics Can Help You Change Process, Culture, and Strategy. Harvard Business Review.

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing Group.  

Rasmussen, T. & Ulrich, D. (2015). Learning from Practice: How HR Analytics avoids being a Management Fad. Organizational Dynamics, 44(3), 236–242.

Stieler, W. (2021). Die Vermessung der Arbeit. MIT Technology Review, 4/2021, 22-27.

Thieltges, A. (2020). Machine Learning Anwendungen in der betrieblichen Praxis – Praktische Empfehlungen zur betrieblichen Mitbestimmung. Mitbestimmungspraxis, Nr. 33, Düsseldorf: Institut für Mitbestimmung und Unternehmensführung.

Tursunbayeva, A., Pagliari, C., Di Lauro, S. & Antonelli, G. (2021). The ethics of people analytics: risks, opportunities and recommendations, Personnel Review, ahead of print.

Zweig, K. (2019). Ein Algorithmus hat kein Taktgefühl: Wo künstliche Intelligenz sich irrt, warum uns das betrifft und was wir dagegen tun können. Heyne Verlag.
UNICORN IN THE FIELD

AlgorithmWatch

About the authors

Sonja Köhne | HIIG

Sonja Köhne

Researcher, University of Hamburg / Associated Doctoral Researcher, Humboldt Institute for Internet & Society

Sonja is an associated doctoral researcher in the group Innovation, Entrepreneurship & Society at HIIG and researcher at the University of Hamburg. At HIIG, she currently supports the research project Artificial Intelligence & Knowledge Work, funded by the German Federal Ministry for Labour and Social Affairs. Her research focuses, among other things, on the digitalization of processes in human resource management and its impact on employees. In particular, she is interested in so-called people analytics applications. Prior to her role as a researcher, Sonja spent five years working as an HR practitioner in the field of HR information systems. 

@sonjaxko

Miriam Klöpper

Researcher in the project “Anonymous Predictive People Analytics (AnyPPA)” at FZI Forschungszentrum Informatik, Berlin

Miriam is a research associate at the FZI Forschungszentrum Informatik Berlin/ Karlsruhe. She is currently supervising the BMBF-funded project Anonymous Predictive People Analytics. She focuses on the topic of the future of work and considers the social and ethical implications of the increasing use of AI in the workplace, as well as the development of co-determination and equal opportunities in the workplace. 

@kloeppermiriam

This post represents the view of the author and does not necessarily represent the view of the institute itself. For more information about the topics of these articles and associated research projects, please contact info@hiig.de.

Sonja Köhne

Associated Doctoral Researcher: Innovation, Entrepreneurship & Society

Sign up for HIIG's Monthly Digest

and receive our latest blog articles.

Sustainability in a digital society

The developments of digitalisation are the greatest technical challenges of our time. At the same time, we must be careful to make our technology and our actions sustainable. Are digitalisation and sustainability opposites? Or can new technologies such as artificial intelligence even contribute to making our lives more sustainable? Is technical progress perhaps even the only answer to climate change? This dossier deals with these questions and offers an overview of the future-friendly development of our digital society.

Discover all 9 articles

Further articles

How to identify bias in Natural Language Processing

Why do translation programmes or chatbots often contain discriminatory tendencies towards gender or race? Here is an easy guide to understand how bias natural language processing works.

Titelbild Blogpost: When self-regulation in platform entrepreneurship is an asset. Ein Einkaufswagen steht auf einem Parkplatz.

When self-regulation in platform entrepreneurship is an asset

Tina Krell interviewed Magdalena Piech from Allegro, Poland’s leading digital marketplace. What are its community-driven efforts and views on regulation and self-regulation in platform entrepreneurship?

You can see an empty platform and tracks leading around the corner, pointing the way to the future.

Drilling down on diversity in the European platform economy

The Platform Alternatives research team looks back on two years of research into the European platform economy and tells which insights have surprised them the most so far.