Skip to content
Webseite – WHY_AI_Christoph Sorge
30 August 2021| doi: 10.5281/zenodo.5243288

Myth: AI Models are abstract and do not need personal data

In supervised machine learning, models are based on abstractions from training data. The models themselves, while structurally influenced by the training data, do not contain the data themselves. It therefore seems reasonable to treat data they contain as (almost) anonymous. However, this is not true. Research has shown that deanonymization is possible under certain circumstances. Therefore, the models have to be considered as partially containing personal data and data protection law has to be taken into account when developing AI models to safeguard data subjects.

Myth

AI Models are abstract and do not need personal data.

 

AI models are an abstraction which may or may not contain personal data. Data protection law needs to be taken into account.

Watch the talk

Material

Presentation Slides
KEY LITERATURE

Shokri, R., Stronati, M., Song, C. & Shmatikov, V. (2016). Membership Inference Attacks Against Machine Learning Models.

Al-Rubaie, M. & Chang, J. M. (2019). Privacy-Preserving Machine Learning: Threats and Solutions. EEE Security & Privacy, 17(2), 49-58.

Liu, B., Ding, M., Shaham, S., Rahayu, W., Farokhi, F. & Lin, Z. (2021). When Machine Learning Meets Privacy: A Survey and Outlook. ACM Computing Surveys, 54(2), 1-36.

About the author

Foto: Oliver Dietze

Christoph Sorge

Professor, Saarland University (Chair of Legal Informatics), Saarbrücken, Germany

Christoph Sorge received his PhD in computer science from Karlsruhe Institute of Technology. He then joined the NEC Laboratories Europe, Network Research Division, as a research scientist. From 2010, Christoph was an assistant professor (“Juniorprofessor”) for Network Security at the University of Paderborn. He joined Saarland University in 2014, and is now a full professor of Legal Informatics at that university. While his primary affiliation is with the Faculty of Law, he is also a co-opted professor of computer science. He is an associated member of the CISPA – Helmholtz Center for Information Security, a senior fellow of the German Research Institute for Public Administration, and a board member of the German Association for Computing in the Judiciary. His research area is the intersection of computer science and law, with a focus on data protection.

@legalinf

This post represents the view of the author and does not necessarily represent the view of the institute itself. For more information about the topics of these articles and associated research projects, please contact info@hiig.de.

Sign up for HIIG's Monthly Digest

HIIG-Newsletter-Header

You will receive our latest blog articles once a month in a newsletter.

Explore Research issue in focus

Du siehst Eisenbahnschienen. Die vielen verschiedenen Abzweigungen symbolisieren die Entscheidungsmöglichkeiten von Künstlicher Intelligenz in der Gesellschaft. Manche gehen nach oben, unten, rechts. Manche enden auch in Sackgassen. Englisch: You see railway tracks. The many different branches symbolise the decision-making possibilities of artificial intelligence and society. Some go up, down, to the right. Some also end in dead ends.

Artificial intelligence and society

The future of artificial Intelligence and society operates in diverse societal contexts. What can we learn from its political, social and cultural facets?

Further articles

A lone shark in the blue ocean symbolises pressure, rivalry and the “shark tank” metaphor. The image reflects emotionless competition at work, where AI can trigger feelings of inferiority and lead to a loss of trust in the technology.

Emotionless competition at work: When trust in Artificial Intelligence falters

Emotionless competition with AI harms workplace trust. When employees feel outperformed by machines, confidence in their skills and the technology declines.

Rowers hold on to each other in boats forming a row. The image illustrates that defending Europe’s disinformation researchers against coordinated attacks needs a united strategy.

Defending Europe’s disinformation researchers

Disinformation researchers in Europe face lawsuits, harassment & smear campaigns. What is behind these attacks? How should the EU respond?

The picture shows a man wiping a large glass window. This is used as a metaphor for questioning assumptions about disinformation and seeking clearer understanding.

Debunking assumptions about disinformation: Rethinking what we think we know

Exploring definitions, algorithmic amplification, and detection, this article challenges assumptions about disinformation and calls for stronger research evidence.